

ISO/TC8 - SHIPS & MARINE TECHNOLOGY

"STRATEGIC STANDARDIZATION" (BUSINESS & REGULATORY IMPORTANCE)

ISO / TC8 Seminar MARINTEK Trondheim, Norway 2006-06-08

> CAPT Charles H. Piersall Chairman, ISO/TC8

ISO/TC8 - A LINKING INSTRUMENT

ISO

REQUIREMENTS
 REGULATIONS

IENTS TRANSFORM ONS REQUIREMENTS TO INDUSTRY STANDARDS & PROVIDE INDUSTRY STANDARDS FOR CONSIDERATION BY IMO, ILO, IAPH, WCO

INDUSTRY

- SHIPYARDS
- SUPPLIERS
- SHIP OWNERS/
 OPERATORS

REQUIREMENTS FOR TODAY'S STANDARDS

- Management, systems based
- Market driven
- Universally accepted "Standard of choice"
- Timing and Timeliness
- Developed concurrently with new technology
- Focused on interchangeability and performance
- Must define a product that can be manufactured, installed, used, maintained and supported safely and efficiently at competitive cost

TIMING & TIMELINESS

- Timing -
 - You have to be there, be active, be accepted and be known for delivering results
- Timeliness
 - You MUST deliver When the Customer Needs It
 - "Business as usual" means failure- customer seeks another venue

PERCEPTIONS & REALITIES

- Common statements to attack & defeat
 - Standards take too long to develop
 - Standards are a technical document leave it to the Engineering Dept Drafting Room
 - Standards Organizations are not responsive
 - ISO is not a true voluntary consensus body

DEALING WITH PERCEPTIONS & REALITIES

- Too long to develop-
 - Make Full Use of the PAS
 - Explain it to the customer- in fact explain it in your TC
 - use all the available options short circuit the CD, lobby membership to get solid DIS to avoid need for FDIS
 - Produce in Single Language
 - Keep your SCs & WGs to an aggressive target schedule.
 Hold program reviews & don't just allow new target dates without full justification
 - ISO/CS must expedite processing & publication!

DEALING WITH PERCEPTIONS & REALITIES (Continued)

- Standards are just a technical document
 - Explain "Strategic Standardization"
 - To all your stakeholders
 - To your TC & SC Leadership
 - Communicate with Top Executives in Government & Industry
 - Educate your customers
 - Market your abilities
 - Publish articles in trade journals, etc.
 - Actively participate in seminars/conferences

STRATEGIC STANDARDIZATION

- Standardization is a Strategic Business Decision
 more than a technical document
- Effective Market Tool
 - open new markets
 - reduce trade barriers
 - ensure company's competitiveness
- If you are not participating in the standards process, your competitors are
 - influencing business issues
 - gaining competitive edge

DEALING WITH PERCEPTIONS & REALITIES (Continued)

- Standards Organizations are not responsive
 - Unfortunately there are examples, BUT
 ISO has taken an aggressive forward looking strategy
 - Program Management improvements & accountability,
 - more use and understanding of IT, greater sensitivity to the Market requirements
 - Develop and use a Business Plan, Operating Plan & Marketing Plan- This is standard business operating procedure -Format it for your use!!
 - "Timing & Timeliness"!!!

ISO/TC8 STANDARDS ACTIVITY

1947-1994 ------Equipment Standards
1994-2001 ------Systems Standards
2002-2010 ------ Safety, Security, Environment, Information, Intermodal

PROACTIVE	REACTIVE	DORMANT
Write Industry	Implement	Do Nothing
Standards for	Regulations	Accept Actions
Consideration by		of Others
Regulatory Bodies		
BEST SOLUTION		UNACCEPTABLE

STATUS OF WORK PROGRAMME (ISO/TC8 N 1000)

- Comprehensive, "living" document, regularly updated which is the "official TC8" Working Status Document
- Subcommittee Status identified published standards, registered work items, possible proposals for new work
- Work Items of Mutual Interest to IMO and ISO/TC8
- Listing of IMO Resolutions
- Index of ISO Standards Numbers referring to Work Items
- Allocation of Number of Work Item to Each TC8/SC

ISO/TC8 PARTNERSHIPS

- IMO/IACS/IAPH Participate in ISO/TC8 Meetings
- IMO/WCO/IACS/IAPH Active in ISO Subcommittees and Working Groups
- ISO Active in IMO Committees and Subcommittees
- ISO TC8 Strategic Alliance with ISO TC67 (Petroleum and natural gas industries)
- ISO TC8 Strategic Alliance with ISO TC104 (Freight Containers) on Freight Movement in Freight Containers

MARITIME & INTERMODAL SUPPLY CHAIN SECURITY PARTNERSHIPS

- ISO Active in IMO Maritime Security WG
- ISO Active in ILO & IMO/ILO WG
- ISO and WCO Collaborate on Data & Supply Chain Security Standards
- ISO Participates in IMO FAL (SPI) with IAPH
- ISO TC8 MoU with Strategic Council on Security Technology
- ISO TC8 Liaisons with ITN, WSC and BIMCO
- ISO/TC8 Liaison with WCO

TC8 SUCCESSES

- Working closely with the IMO we have successfully been major reference in many IMO Codes & Conventions
 - Fire Protection; High Speed Craft; Other
 - SOLAS/MARPOL/STCW
- Requires continuing presence & participation with IMO Committees Subcommittees
- > 100 TC8 work items directly related to support IMO

TC8 SUCCESSES (Cont.)

- SUPPLY CHAIN SECURITY
 - ISO 28000 Series
 - ISO 20858 Implementing IMO ISPS Code
- Maritime & Intermodal security initiative supporting IMO, Governments , Industry
- Similar Supply Chain Success with IAPH, WCO and ILO, Governments, Industry

WHAT IS ISO/PAS 28000?

- The management systems standard for Supply Chain Security An overarching "tool" Published 2005-11-15
- A major initiative industry and governmental cooperation
- Provides requirements for establishing, implementing, maintaining and improving a security management system for the supply chain
- Applicable to a broad range of organizations
- Risk based, follows 14001, the environmental management system standard

OTHER DEVELOPMENTS

- ISO / PAS 20858
 - Published 2004; Uniform industry implementation of IMO's ISPS Code
- ISO / PAS 28001
 - Assist industry in Best practices for custody in supply chain
 - Consistent with WCO Framework of Standards; Being balloted
- ISO 28003 auditing/conformity assessment; Draft completed
- ISO 28004
 - Guidance for 28000 Consensus achieved;
 - Ready for Balloting
- ISO 28005
 - Electronic Port Clearance (EPC); Under development
 - Computer -- to Computer data transmission

ISO ASSISTS IN IMPLEMENTATION

- Assisting 5 Major Ports in implementing ISO
 28000
- ISO PAS 20858 being used as teaching tool for developing nations in concert with the ISPS Code
- Assisting Major Ports in implementing ISO 14001 (Environmental management systems standard)

IMO MSC # 81 - 2006-05

- Passenger Ship Safety
- Maritime Security
- Goal-based Standards
- Ship Design and Equipment
- Bulk Liquids and Gases
- Stability, Load-lines and Fishing Vessel Safety
- Fire Protection
- Formal Safety Assessment

.....Potential New Work Items for ISO/TC8

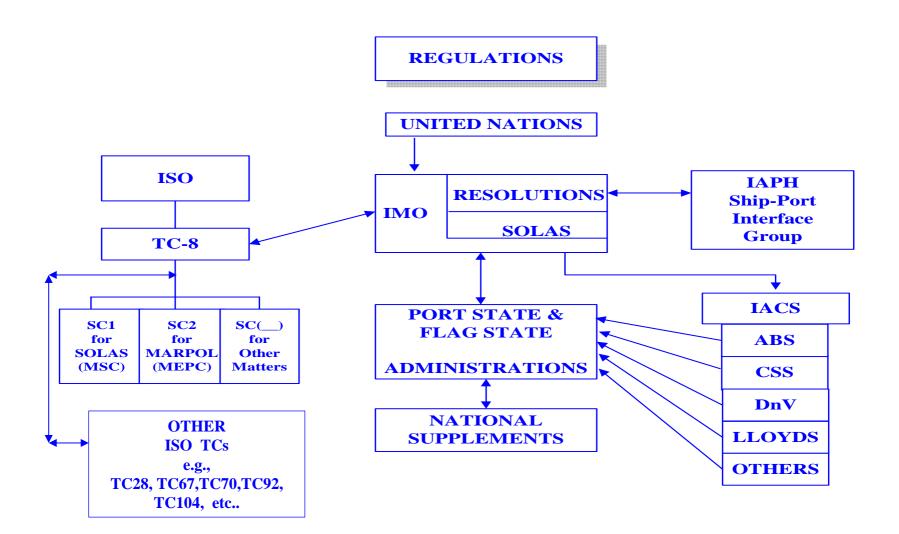
SUMMARY

- International Linkages already well established
 - ISO Secretary General Assigned Responsibility to ISO/TC8 as follows:
 - Principal Liaison to IMO we attend all IMO Committee and most SC meetings - for past 11 years, active member of Maritime Security WG
 - ISO/TC8 Chair is designated ISO Rep to IAPH for past 15 years
 - ISO/TC8 Chair is ISO Rep to ILO for Maritime
 - ISO/TC8 is Principal Liaison to WCO

SUMMARY (Cont)

- ISO/TC8 has ongoing active collaboration with International Organizations in Shipping & Shipbuilding-
- ISO/TC8 is active participant in UN/ECE Committee on Water Transport
- ISO/TC8 actively working with EU leaders on "Intermodal and short sea shipping" to provide international standards for use by the EU
- ISO/TC8 presenting to APEC in Singapore

ADDITIONAL REFERENCE SLIDES


ISO/TC8 ADVISORY GROUP MEMBER BACKGROUND REQUIREMENTS

- Industry Shipping, Shipbuilding/Repair, Intermodal
- Government- Port state, regulatory needs
- Possess skills in:
 - Strategic planning, business planning
 - Organizational planning and resource allocation
 - Business management
 - Program management
 - Business development and marketing
 - Information technology
- Facilitate the "linkage" to IMO
- Appointment limited on basis to "balance expertise"
- <u>NO STANDARDS EXPERTISE REQUIRED</u>

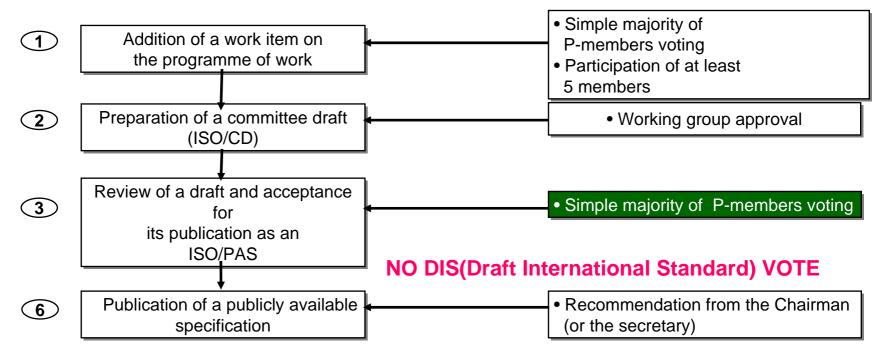
SUMMARY (Cont.)

- Program Status Update Presented to
 - IMO Maritime Safety Committee -December 2002
 - IMO SOLAS Diplomatic Conference -December 2002
 - IMO Facilitation Committee and Ship/Port Interface Working Group - January 2003
 - Numerous U.S. and World Leaders
- Active Participation with IMO in Development of the ISPS Code

INTERNATIONAL RELATIONSHIPS

TC8/TC67 STRATEGIC ALLIANCE

• MoU SIGNED BY TC CHAIRS - 2000-09-11


- DOES NOT MODIFY COMMITTEE SCOPES
- FIRST SUCH AGREEMENT IN ISO HISTORY
- INSURES COOPERATION & PARTICPATION IN DRILLING & PRODUCTION FLOATING SYSTEMS
 - Hulls Basically TC8
 - Systems & Requirements TC67
 - FPSOs, FSUs, OSVs, ATBs
- TC8 CONTINUES AS PRINCIPAL INTERFACE WITH IMO

ISO TC8/TC104 STRATEGIC ALLIANCE

- MoU SIGNED BY THE TC CHAIRMEN
 - TC8 (Ships & Marine Technology)
 - TC104 (Freight Containers)
- Insures Active Cooperation & Participation with Each Other in Writing Standards to Insure a Seamless, "Intermodal" (Ships and Ship/Port Interface) Movement of Freight in Freight Containers
- ISO/TC8 Continues to Provide Principal ISO Interface with IMO
- Agreement Dated 2002-06-20

Main Steps of a Draft and Required Approval Special case: Publicly available specification (PAS) JUSTIFICATION - Urgent market requirement

PROCEDURE

Can Be Amended as Necessary at Anytime After 3 years: review for reconfirmation After 6 years: transformation into an ISO standard or withdrawal

INTERNATIONAL STANDARDIZATION

"We cannot engage in a level playing field, equal trade, open up markets and get rid of trade barriers unless we harmonize standards"

An essential ingredient for achieving the "well-balanced optimum" of safer, secure and cleaner seas together with a prosperous maritime industry

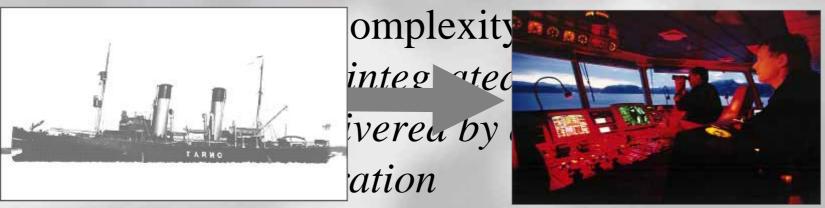
SUMMARY (Cont.)

- The initiatives undertaken by ISO/TC8 in maritime and supply chain security are "inclusive", not "exclusive".
- The Maritime Industry is "International" -Regional or National solutions are not best interest of the industry.

Marine Cybernetics and DNV HIL Presentation

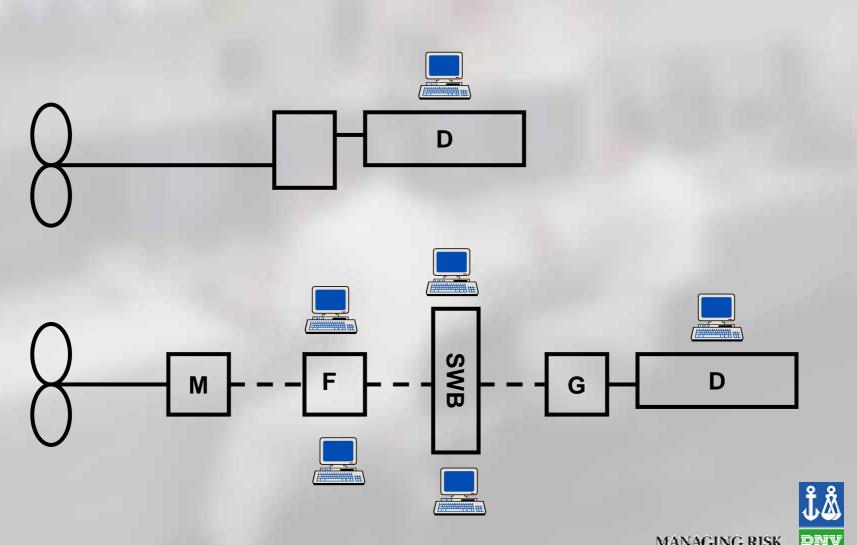
Asgeir J. Sørensen 2006-06-08

Vestre Rosten 77 NO-7075 Tiller, Norway <u>www.marinecybernetics.com</u> E-mail: <u>ajs@marinecybernetics.com</u>


The Digital "Big Bang"

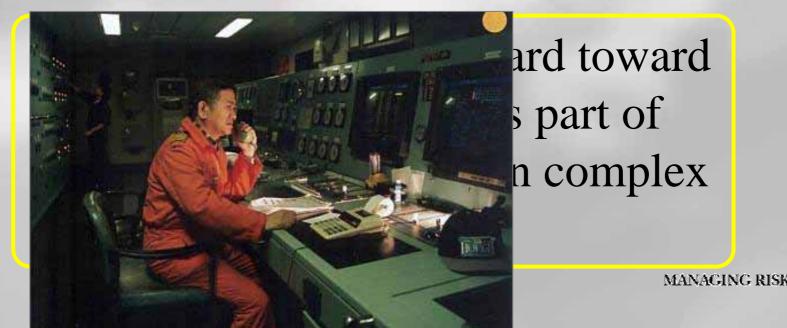
Industry Challenge – Background

Modern maritime machinery plants


- Mechanical ship → computer-based ship
 - large number of computer control systems

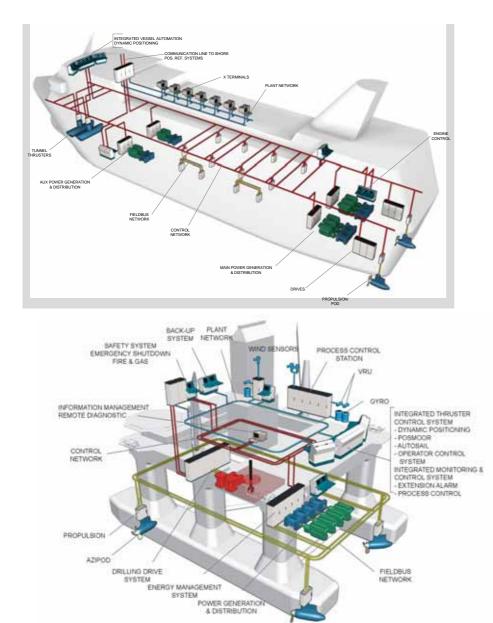
Testing methods are *lagging behind* the system technology development! MANAGING RISK

Propulsion Layout (principle sketch)



MANAGING RISK

Industry Challenge


As a result of this development:

- Need for more comprehensive testing, but integrated systems are difficult to test
- Failure situations are difficult to handle

Marine Control Systems

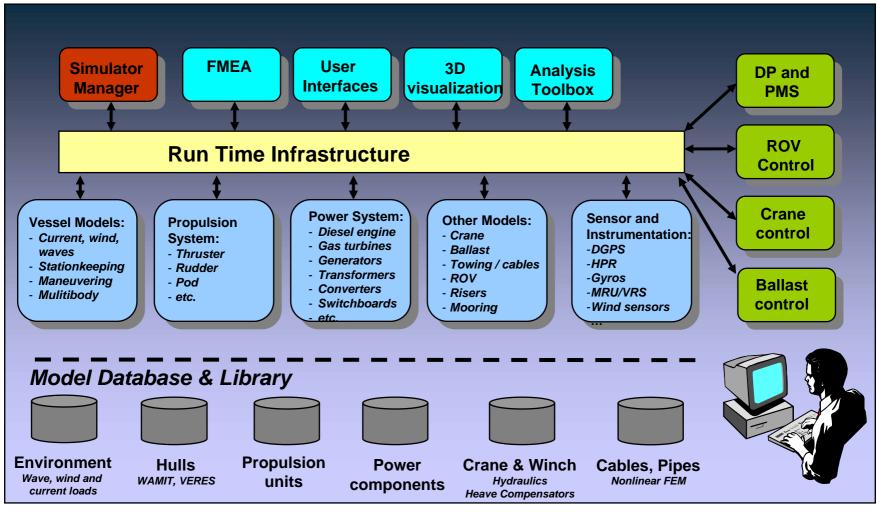
Diesel-electrical systems

- Electric power generation and distribution
- Electrical propulsion
- Electrical drives and rotating machinery

Marine Control Systems

- Machinery system
- Ballast system
- Loading system
- Power management
- Dynamic positioning system

MARINE CYBERNETICS

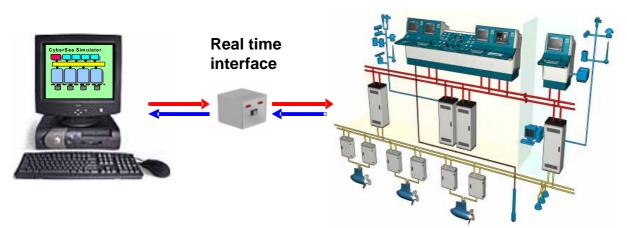

- Autopilot

Examples of findings from DP-HIL Safety and Performance Testing

Sensors

- Single VRU failure caused simultaneous loss of all position reference systems
- Wind sensor failure caused loss of position. Too little time for DP operator to react after warning and eventually alarm was given.
- Incorrect NMEA telegram format gave no alarm
- Position Reference Systems
 - Drive-off due to DGPS slow drift in combination with hidden failures
 - Weighting and voting settings found important for resistance to common mode failures when using two DGPS
- DP Computer System
 - Controller gave incorrect thrust commands after operating on capability limit for some period of time
 - All controllers crashed simultaneously after mode change
 - Inconsistency in alarms reported on different operator stations
 - Incorrect alarms, incorrect alarm texts, incorrect alarm description
 - Hidden failure in I/O card made one controller in-operable. No alarms indicating failure was given, even after this controller was selected in use.
 - An alarm was changed to a warning after some time, it appeared that the alarm never occurred
- Thruster and propellers
 - One azimuth thruster was not actively used when operating at the capability limit
 - Thruster feedback sensor or signal failure may lead to drive-off and loss of position
- Power System
 - Reduced redundancy due to incorrect cabling in UPS fusing
 - Circuit breaker failure caused no alarm

CyberSea Simulator: HIL Simulation



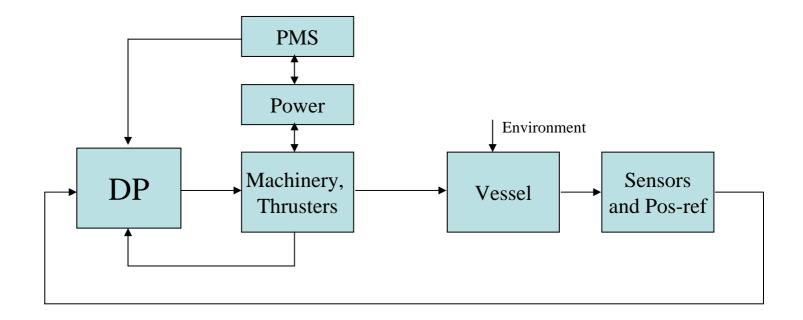
HIL: Hardware-In-the-Loop

Hardware-In-the Loop (HIL) Testing

- A NEW TECHNOLOGY for HIL testing of control systems as input to DNV Standard for Certification of control systems
- To be used in FAT (Factory Acceptance Tests), sea trials, annual tests, periodical tests and after upgrades

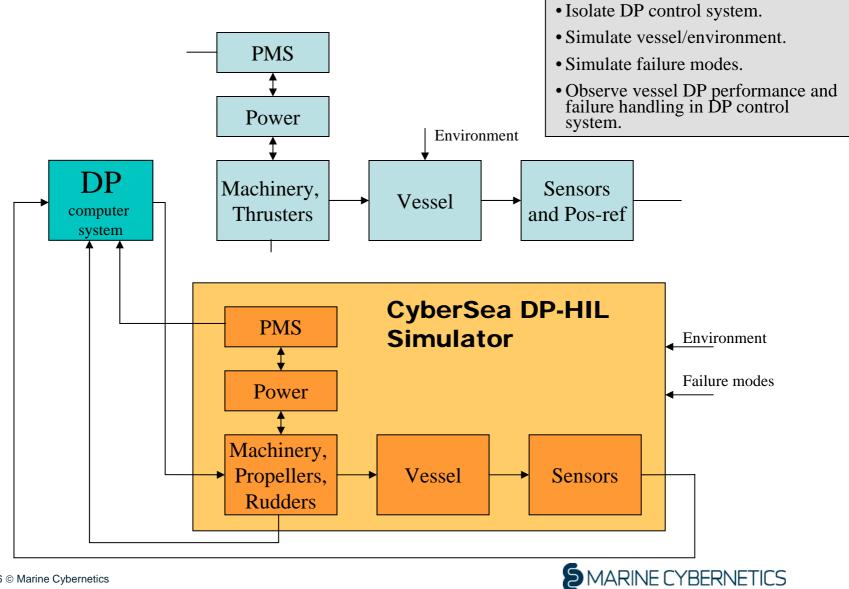
Customers:

- 1. Oil companies
- 2. Vendors and Yards
- 3. Ship Operators
- 4. Contractors
- 5. Class societies

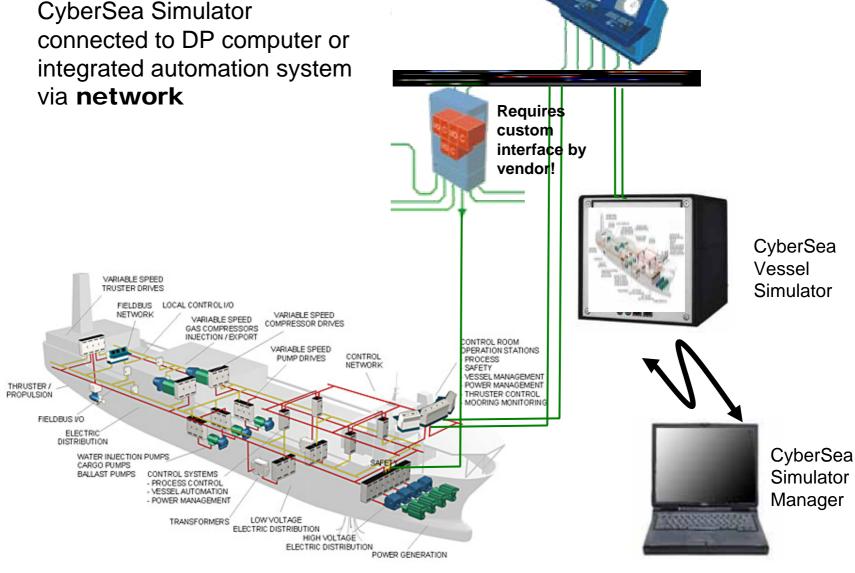

HIL Safety and Performance Testing

- DP-HIL (since 2004)
- PMS-HIL (since 2006)
- Propulsion-HIL (new)
- Autopilot-HIL (new)

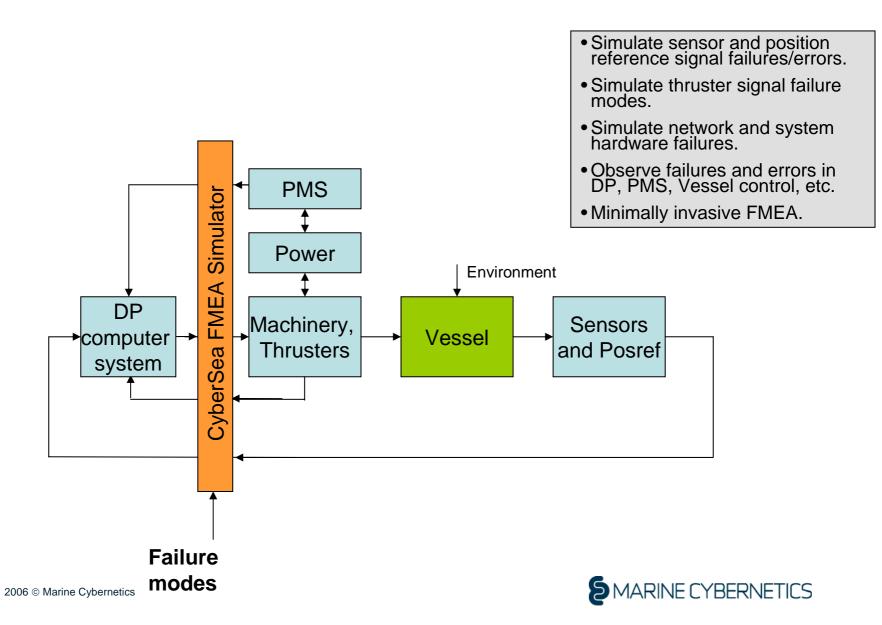
2006 © Marine Cybernetics



DP System Overview



CyberSea DP-HIL Simulator (FAT/dock)

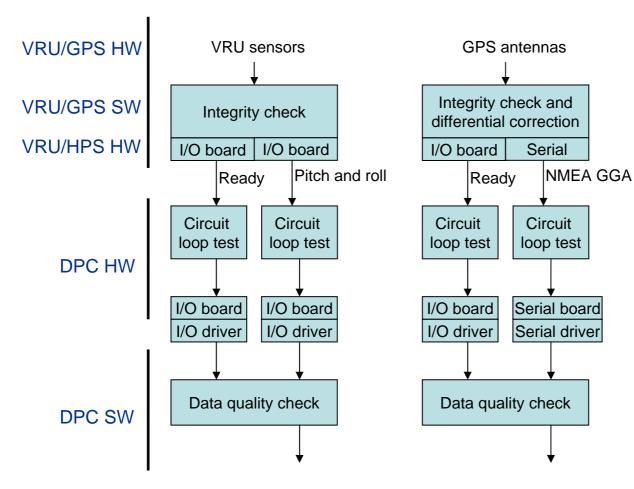

Option 2:

CyberSea Simulator

CyberSea FMEA Simulator (Sea trials)

HIL Testing and FMEA

Observations


- There are no requirements for redundancy of software. Software errors should be considered a common mode failure. The consequence of software errors are therefore potentially much larger than component failures.
- A focus on functional barriers in FMEA studies is useful in order to understand the possible impact of complex failure modes, the role of software, and how to efficiently analyse and test DP systems.

Example: Barriers to loss of position due to VRU and DGPS failure modes

COMPONENTS

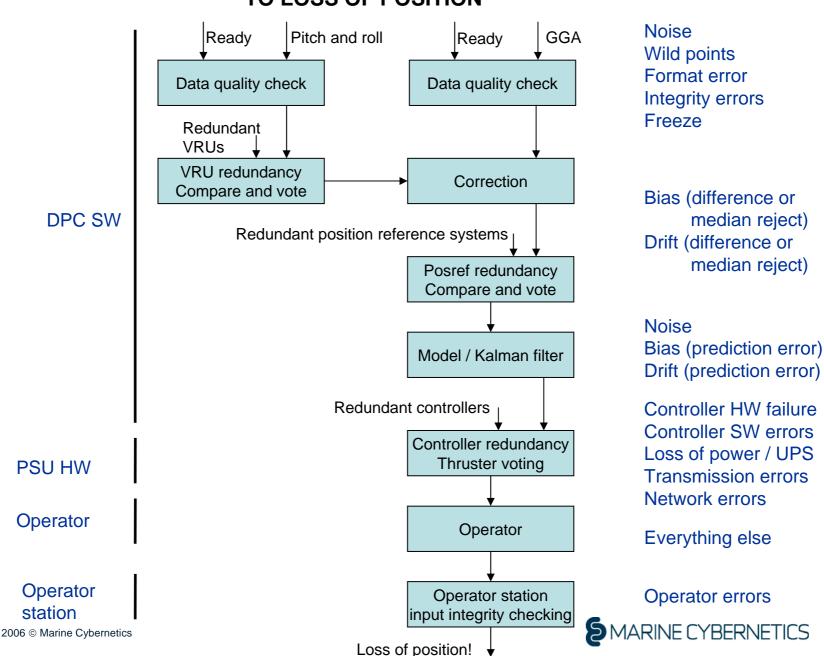
FUNCTIONAL BARRIERS TO LOSS OS POSITION

FAILURE MODES

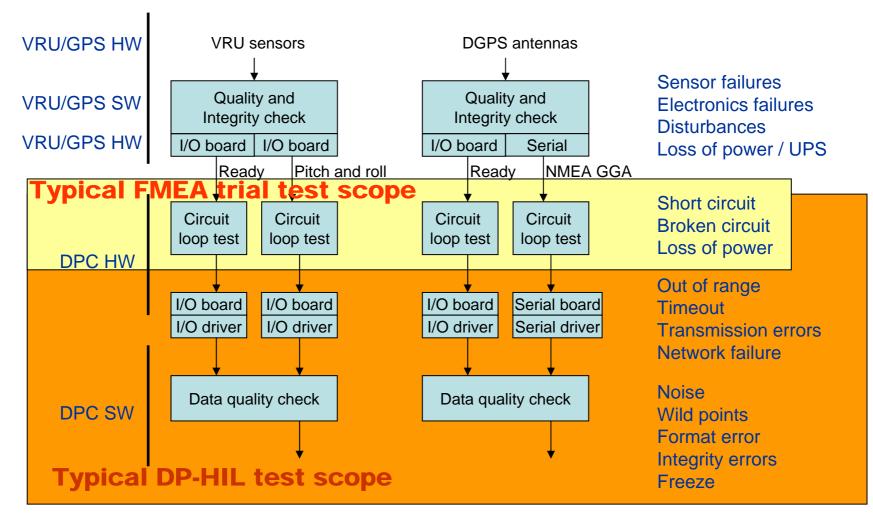
Sensor failures Electronics failures Disturbances Loss of power / UPS

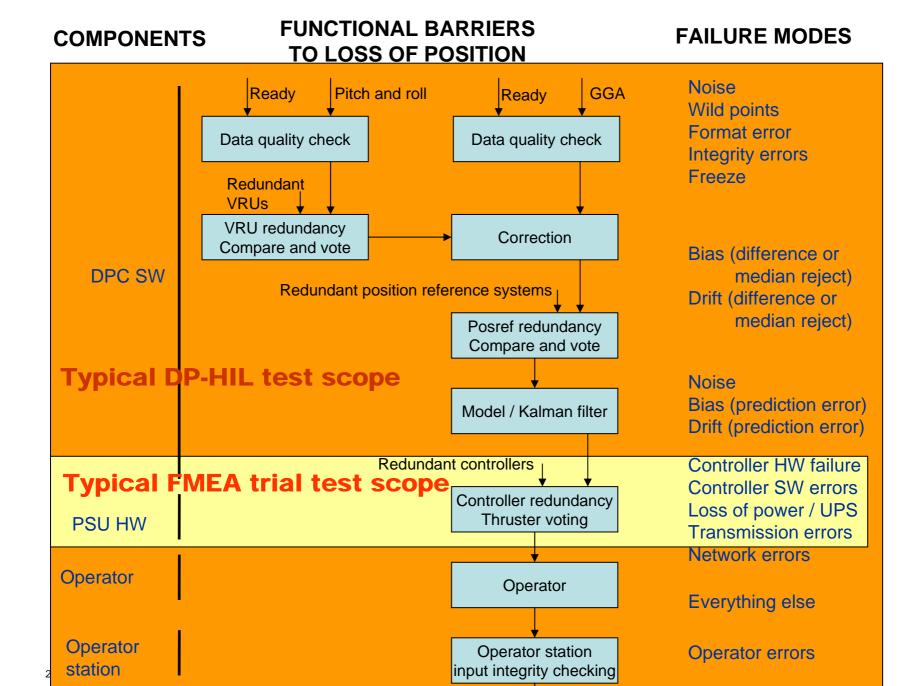
Short circuit Broken circuit Loss of power

Out of range Timeout Transmission errors Network failure


Noise Wild points Format error Integrity errors Freeze

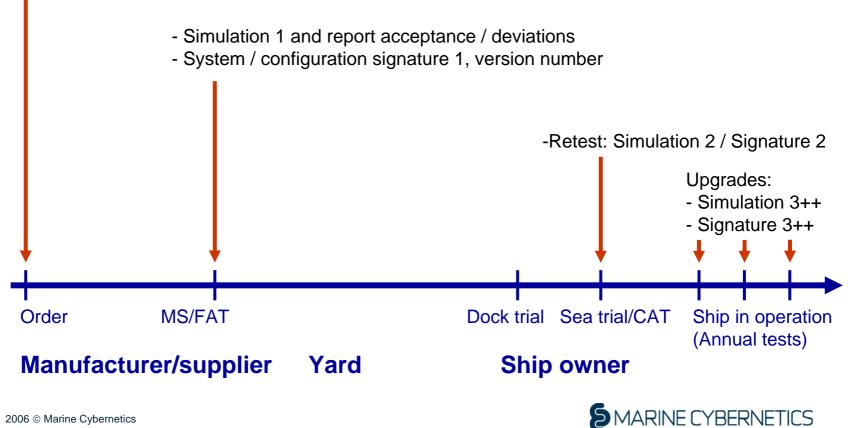
FUNCTIONAL BARRIERS TO LOSS OF POSITION


FAILURE MODES

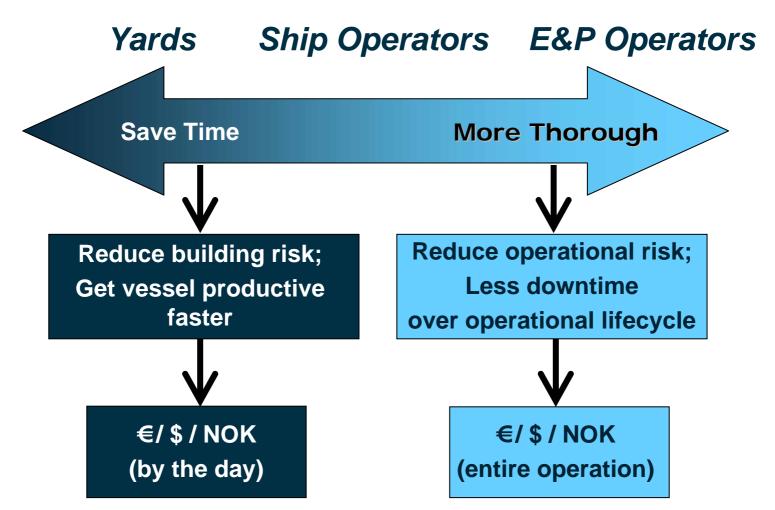

COMPONENTS

FUNCTIONAL BARRIERS TO LOSS OF POSITION

FAILURE MODES


Loss of position!

Certification and Class Process


New Buildings and Sailing Ships

Request for CyberSea test and verification services

- Engineering: simulator configuration, test plan with acceptance criteria for safety / performance

Customer Value (1)

HIL testing improves building efficiency and operational availability

S MARINE CYBERNETICS

"Big Picture" Value Drivers

Main Players	Vendor	Yard	Ship Operator	E&P Operator
Value of improved	~ 10.000 USD	~100.000 USD	~10 ⁶ USD	~10 ⁷ USD
testing and verification for Offshore Service Vessels, Drilling, FPSO,	Design/ engineering team efforts	Increased sea trial costs and delayed delivery	Off-hire cost, damage cost, (vessel day rates)	Lost revenue and production, damage cost, HSE,

References: Ships in Operation 2006

Acergy Osprey, Acergy (DSV) Kongsberg Maritime DP 3

Island Frontier, Island Offshore (IMR) Marine Technologies DP 3

Far Fosna, Farstad Shipping (AHTS) Rolls-Royce DP 2

Bourbon Orca, Bourbon Offshore (AHTS) Kongsberg Maritime DP 3

References: New Buildings 2006

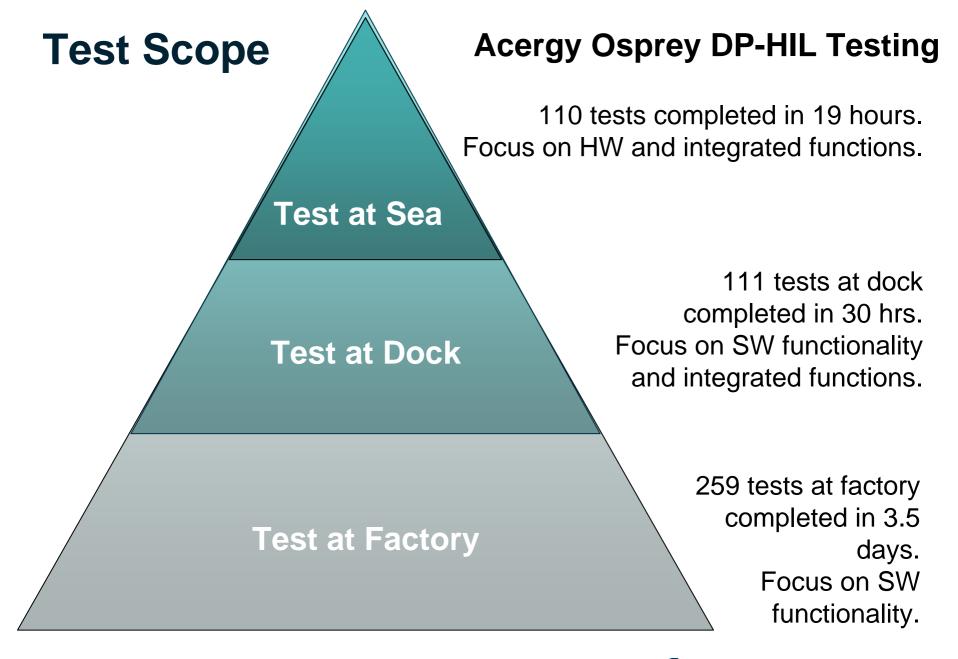
NB 275 Ulstein Yard, Bourbon Offshore (PSV) Marine Technologies DP 2 Ulstein/Megacon PMS

NB 275 Ulstein Yard, Bourbon Offshore (PSV) Marine Technologies DP 2 Ulstein/Megacon PMS

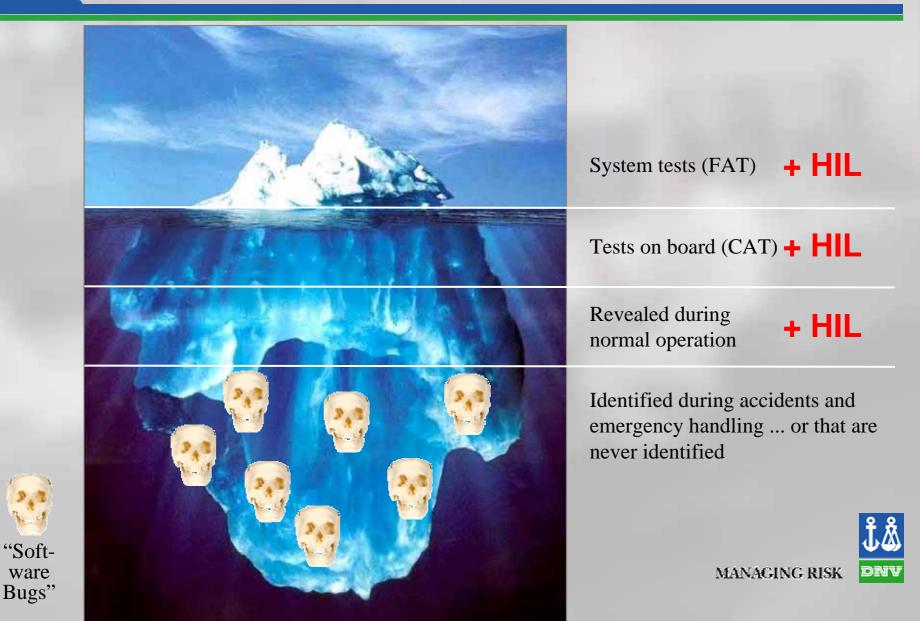
Reference: Ships in Operations Acergy Osprey

- Diving and Construction Ship
- DP Class 3: Kongsberg Maritime
- E&P Operator: Statoil
- Class: DNV AUTRO + SfC of HIL testing

DP-HIL Safety and Performance Testing


FAT:

• January 2006


Dock Trials:

- February 2006
- Sea Trials:
 - March 2006

Software Problem Identification

Software Problem Identification

Goal: Reduced number of possible "Software bugs" will give a safer system after HIL testing

System tests (FAT) + HIL	
Tests on board + HIL	
Revealed during normal operation + HIL /	
Identified during accidents and emergency handling or that are never identified	
گر 1	

MANAGING RISK

Why does DNV believe in HIL

testing in the maritime industry?

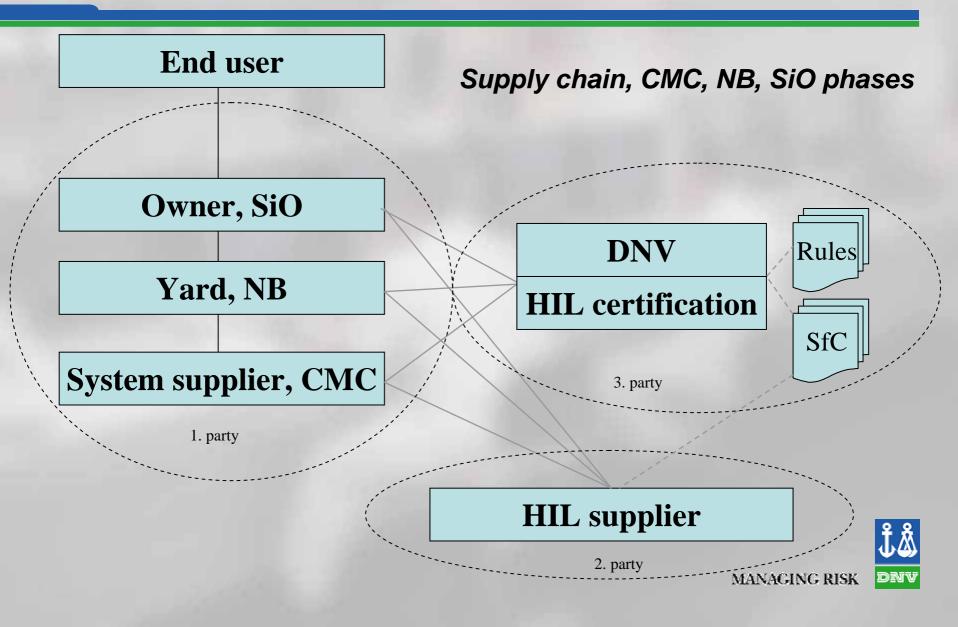
- HIL technology is successfully applied to other industries
- Reliability of control systems is of great concern to stakeholders in the offshore and the maritime industry

MANAGING RISK

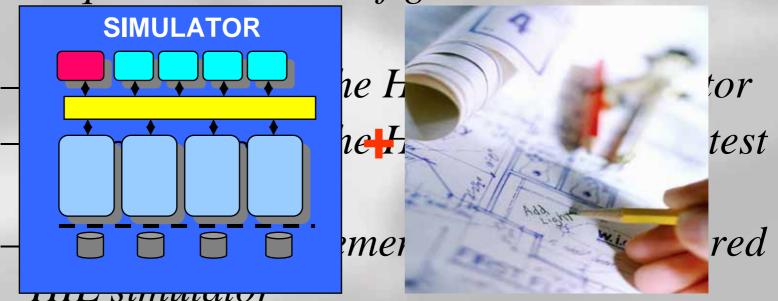
DNV Deliveries related to HIL

DNV can offer an independent certification of the HIL process

- DNV approves HIL test suppliers
- DNV has a standard for HIL testing
- DNV issues HIL certificates (


MANAGING RISK

Certificate


- Defines responsibilities for the involved parties
 - Target system owner
 - HIL Supplier
 - HIL Test organisation
 HIL Certification body

- Defines general requirements for the HIL test package
 - -Requirements to configured HIL/Plant

MANAGING RISK

- Refers to functional requirements for the target system
 - -E.g. class rules for DP, PMS,...

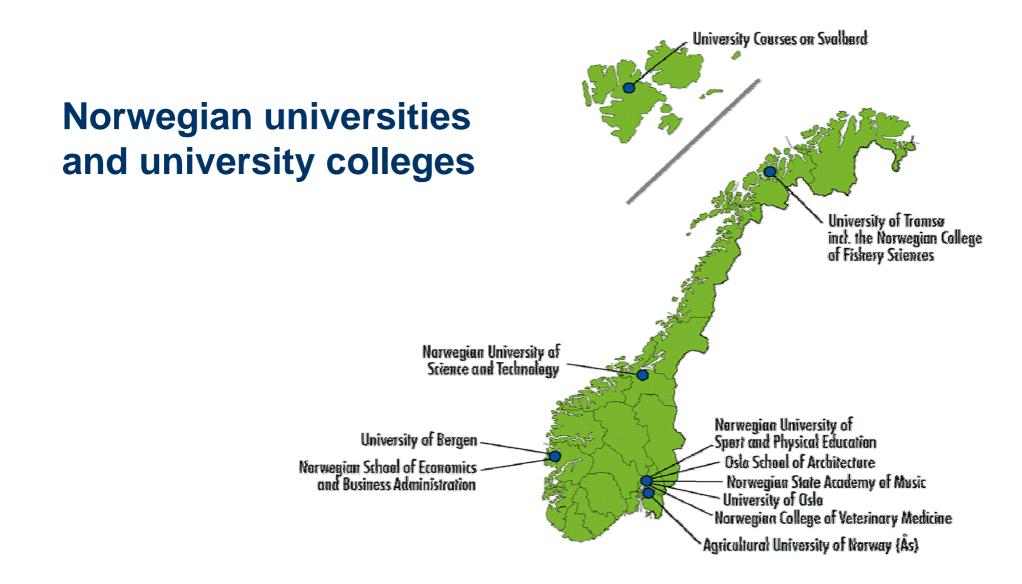
MANAGING RISI

• Defines the content of the HIL test certificate

Conclusion

• HIL

- makes possible improved testing compared to today's maritime test standards
- makes the system become safer
- will become part of the future industry standard
- is available today


HIL represents a significant step forward

- The maritime and offshore markets request improved testing regime for safety critical onboard computer systems. HIL testing and HIL test certification are an answer to this request.
- DNV can deliver certification of HIL testing today

MARINTEK

2005-00 ad Apri

Gløshaugen-Campus

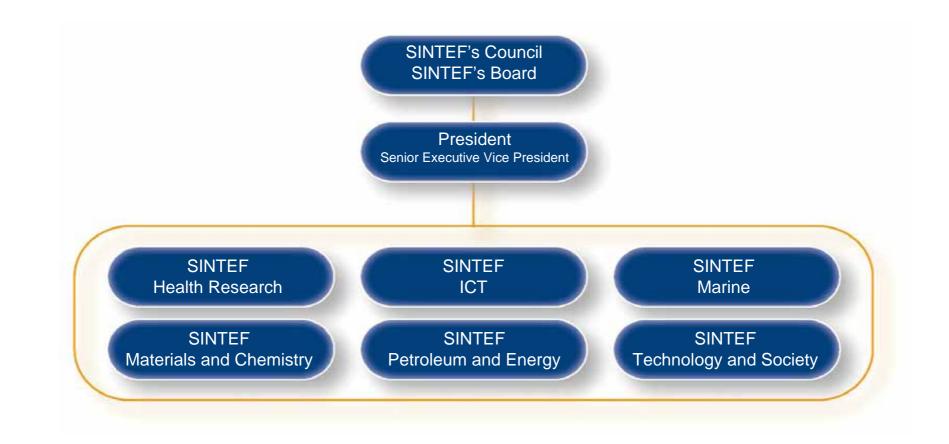
MARINTEK

Technology for a better society

Our partners

- The Norwegian University of Science and Technology, NTNU:
 - 20000 full-time students
 - 973 scientific employees
- University of Oslo, UiO,
 Faculty of mathematics and natural sciences:
 - 4500 full-time students
 - 518 scientific employees

NTNU and the SINTEF Group Collaboration in R & D



The SINTEF Group

The SINTEF Group (cont.)

Marine Technology Centre in Trondheim, Norway

MARINTEK

Market Profile

MARINTEK carries out contract R&D for marine related industries:

- Offshore oil/gas industry
- Ship building industry
- Shipping

MARINTEK

• Marine equipment industry

MARINTEK is heading for technologically challenging R&D projects:

- New advanced product concepts and prototypes
- New advanced services

for the benefit of our customers, and the society through:

- Reduced risks for human lives, environment and capital assets.

MARINTEK undertakes multidisciplinary projects and co-operates with associated partners within the SINTEF Group.

Technology Profile

MARINTEK is a contract research institute within marine technology.

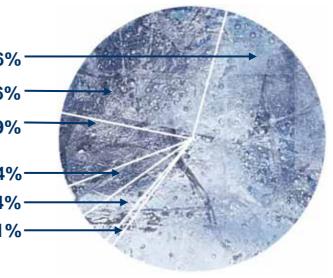
- Hydrodynamics and structures
- Energy and machinery technology
- Operations technology

MARINTEK is co-operating closely with the Norwegian University of Science and Technology (NTNU) - Institute of marine technology.

MARINTEK operates national marine technology laboratories together with NTNU.

- Ocean basin (80x50x10 m)
- Ship model towing tank (260 m)
- Cavitation tunnel

- Machinery laboratory
- Marine structures laboratory

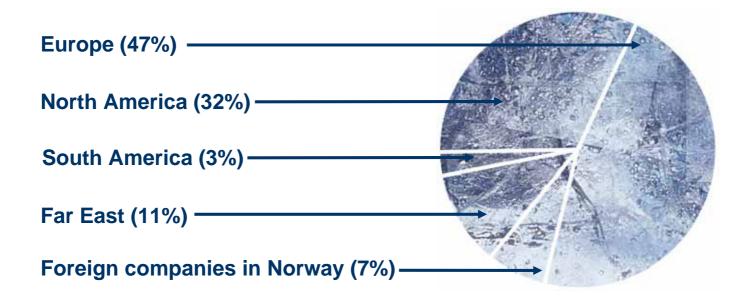


Ownership

MARINTEK has the following shareholders:

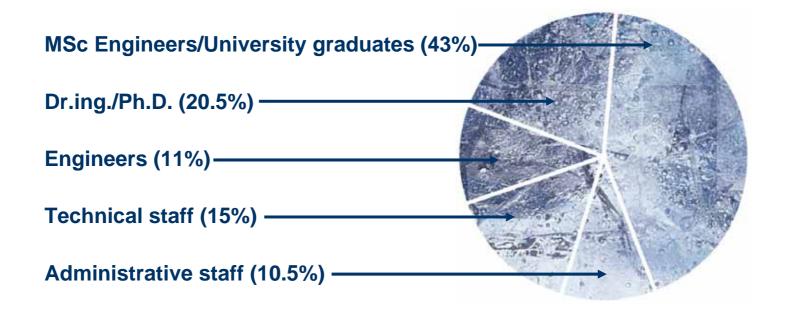
SINTEF:	6.5 MNOK	56 9
Norwegian Shipowners' Association:	3.0 MNOK	269
Det Norske Veritas:	1.0 MNOK	99
Found. of Shipbuilders' Fund for Research and Education	0.5 MNOK	4
Directorate of Shipping:	0.5 MNOK	49
Fed. of Norwegian Coastal Shipping :	0.1 MNOK	19

MARINTEK


Total Share Capital: 11.6 MNOK

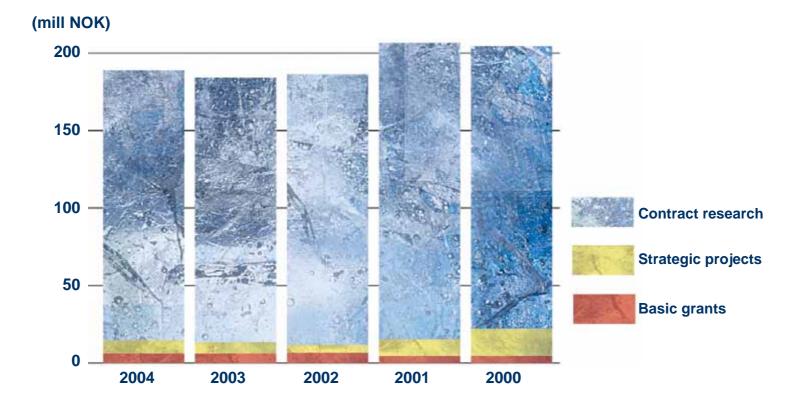
Foreign trade

34% of total turnover Total turnover 2004: 189 mill NOK



Personnel

176 employees (2005-01-01)



Project-related specification of turnover

Total turnover 2004: 189 mill. NOK

MARINTEK projects in EC – FP 5

CTID	Steers	Injustion Dissel Engine
STID	- Steam	Injection Diesel Engine
Waterman-Ts	- Water	borne Traffic and Transport Management - Thematic Network
THEMIS		atic Network in Optimizing the Management of Intermodal port Services
THEMES	(TN) - Thema	atic Network on Safety Assessment in Waterborne Transport
IP - Intermodal P	rtal - Integra	ation of Ports into Intermodal Transport Chains
TRESHIP	(TN) - Techn	ologies for Reduced Environmental Impact from Ships
MARPOWER		pts of Advanced Marine Machinery Systems with Low ion and High Efficiency
FLOWMART	- Efficie	nt Low Wash Maritime Transportation
SWAN		ardization and Dissimination Support Actions for Waterborne atics Networks and Applications
ITEA-DS	- Intelliç	gent Tools for Emergency Applications and Decision Support
D2D		nstration of an Integrated Management and Communication m for Door 2 Door Intermodal Freight Transport Operations
MARTOB	- On bo Marine	ard Treatment of Ballast Water and Application of Low Sulphur Fuel
HullMon+	- Intellig	gent Hull Monitoring Systems
ENCONA		raging Co-operation between Community Funded and al Research in Maritime Sector

MARINTEK

....

MARINTEK projects in EC – FP 6

ERAMAR	(TN/CA) -	European Research Area Application in the Maritime Domain
ERASTAR	(CA) -	The Network for the Shipbuilding Technology applied Research
DSS-DC	(STREP) -	Decision Support System – Damage Control (MARINTEK Coordinator)
MTCP	(CA) -	Maritime Transport Coordination Platform
INMARE	(CA) -	Best Practices of Ship Management
HERCULES	(IP) -	Reduction of CO ₂ Particles from Engines
ENCOMAR	(SSA) -	<u>Enhanced Co</u> -operation between EU Member States and <u>A</u> ssociated <u>C</u> andidate <u>States in Ma</u> ritime <u>R</u> esearch on Transport (Extension of ENCONA project)
SPREEX	(STREP) -	Spreading of Oil Pollutions in Sea
SUPERPROP	(STREP) -	Superior Life-Time Operation Economy of Ship Propellers
MARNIS	(IP) -	Maritime Navigation and Information Services
VISIONS	(NoE) -	Visionary Concepts of Vessels and Floating Structure
FREIGHTWISE	(IP) -	Intermodal Freight Transport Information System

MARINTEK

....

Ship Technology and Operation

Ship performance and operation

- Ship performance
- Manoeuvring and ship handling
- Sea-keeping performance and operational criteria
- Sea loads
- Propellers, cavitation and noise
- Waterjets
- Thrusters, positioning capacity

Efficient production

- Pre-outfitting principles and methods
- Procurement principles and methods
- Preliminary design tools
- Cell-oriented construction methods
- Preliminary design tools
- Information technology for the shipbuilding industry

Energy technology

MARINTEK

- Diesel and gas engine processes R&D
- Ship equipment design analyses and development
- Energy conservation and pollution control
- Liquid and gaseous fuels, quality validation and testing
- Prototype testing and verification

(Cont.)

Ship Technology and Operation (cont.)

Shipping and logistics

Supply Chain Management

MARINTEK

- Transport scenarios and logistic support systems
- Management and decision support systems
- Condition assessment and maintenance program
- Qualification testing of personnel and computerbased training

Control and monitoring systems

- Integrated bridge systems and operational procedures
- Marine cybernetics, anchoring and dynamic positioning
- Marine crane operations and heave compensation

Offshore Oil and Gas Industry

Floating systems

- Loads and motions of floating support vessels
- Loads and motions of risers and other connecting elements
- Capacity of anchoring and dynamic positioning systems
- Operation and operability criteria in specified environments

Structural analysis and testing

- Ultimate strength and collapse behaviour of steel structures
- Dynamic analysis and fatigue design
- Dynamic analysis of slender marine structures; risers and pipelines
- Stress analysis of flexible risers including thermal effects, service life assessment
- Reliability assessment of steel structures, risers and pipelines
- Integrated fire analysis of steel structures
- Re-assessment of ageing structures

MARINTEK

Cont.

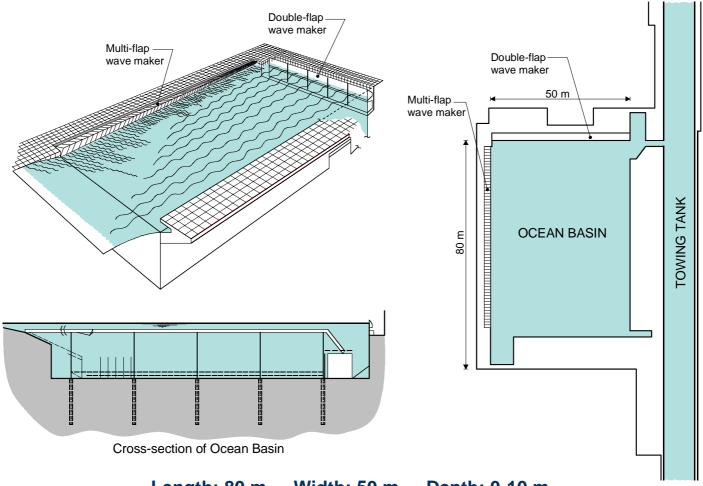
Offshore Oil and Gas Industry (cont.)

Offshore operations

MARINTEK

- The positioning of surface vessels
- Forces on, and motions of, complex geometries
- Heave compensation devices
- Simulation of subsea operations

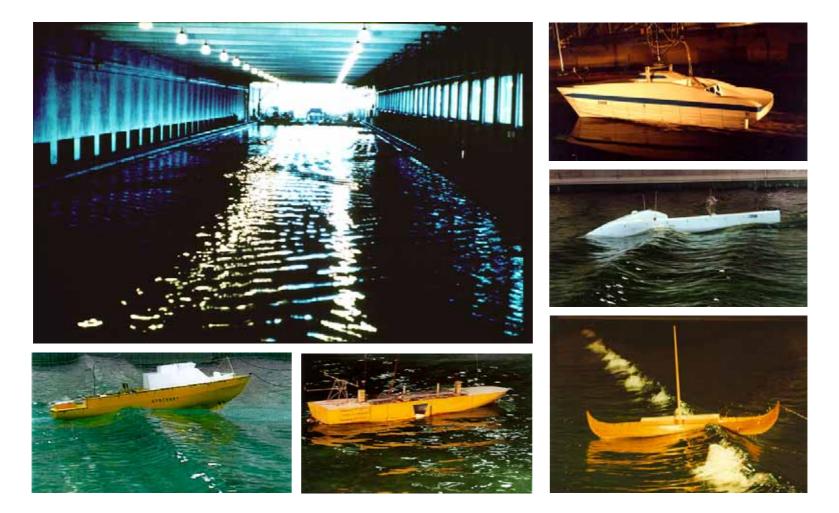
Efficient design and operations


- Operational scenarios and logistics support systems
- Condition assessment and maintenance program development
- Qualification testing of personnel and computerbased training
- Management information systems for operations

The Ocean Basin Laboratory

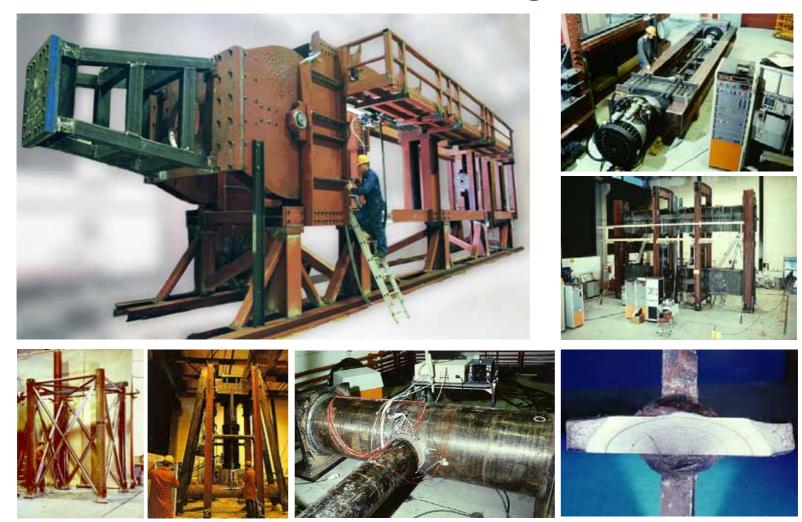
Length: 80 m - Width: 50 m - Depth: 0-10 m

Marine Technology Centre in Trondheim, Norway

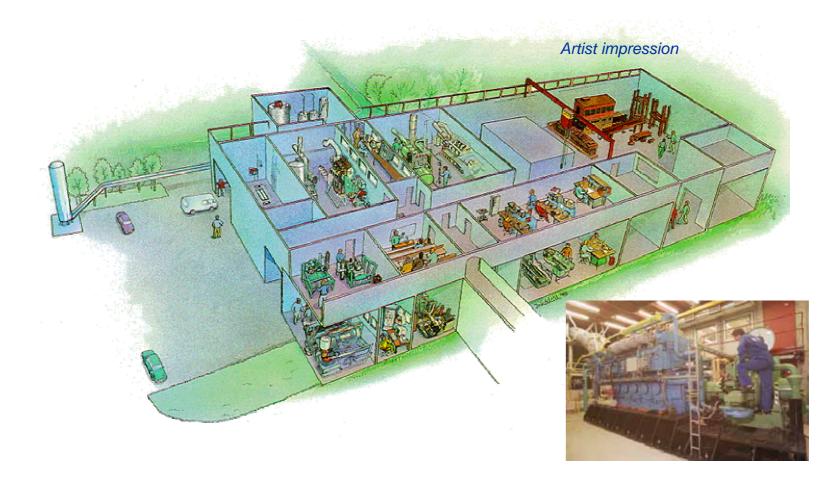


Model tests in the Ocean Basin

Model tests in the Ship Model Tank

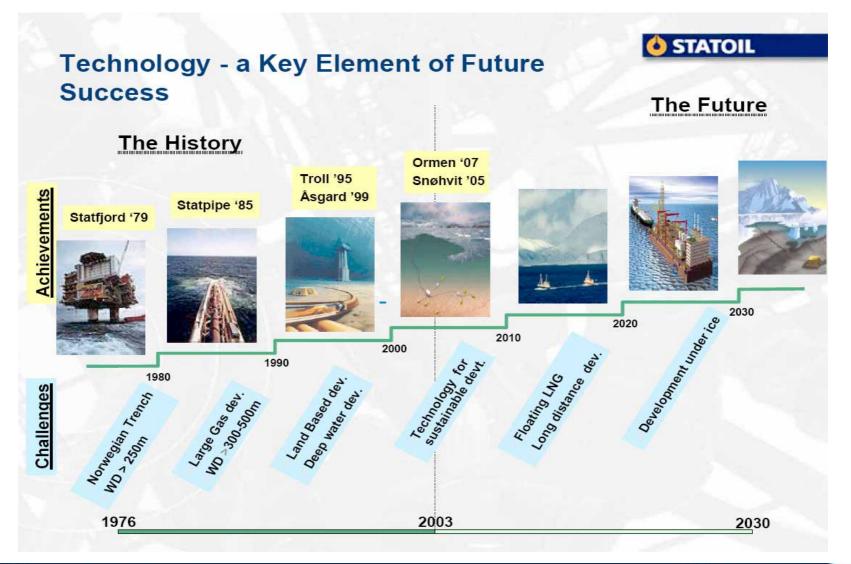


The Cavitation Laboratory

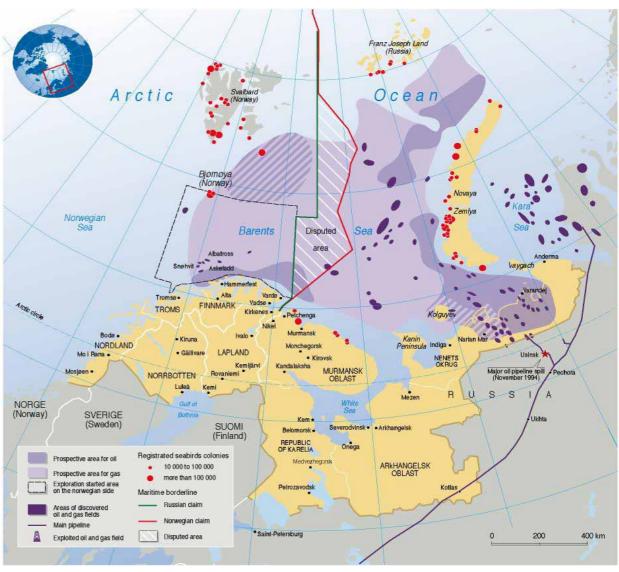


Structural Testing

The Machinery Laboratory



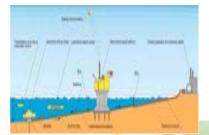
Heading North!!


Development of the Norwegian Offshore Industry

Oil exploitation and transport in the Arctic

- 25% of the world's undiscovered oil resources are expected to be found in the Barents Sea
- EU imports 70% of her energydemand. Only Danmark and UK net exporters.
- Politically stable area
- Strategic location wrt. the EU
- EU's "Northern Dimension" Programme
- Close dialogue EU, Norway, Russia on the energy field

New drivers for the Norwegian Ocean Dimension


Stortingsmelding: / Governmental White Paper :

"Challanges and Possibilities in the Northern Areas" April 2005.

Environmental and safety issus

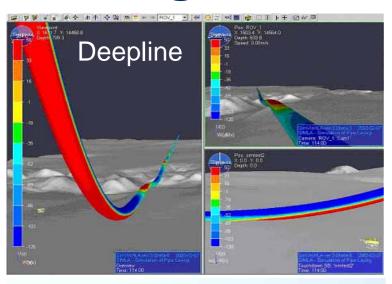
Surveillance and Defence

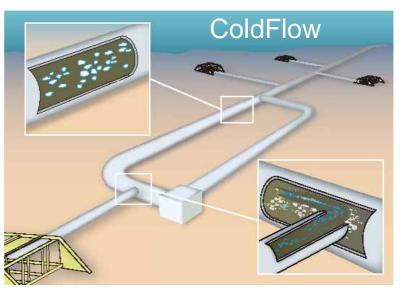
Oil and Gas Exploitation

Industry in North of Norway

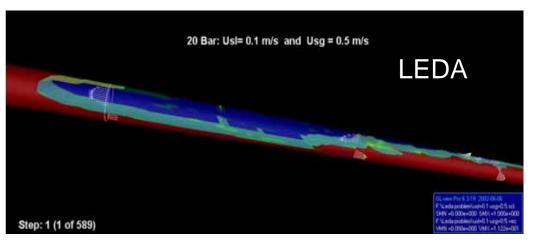
North East passages

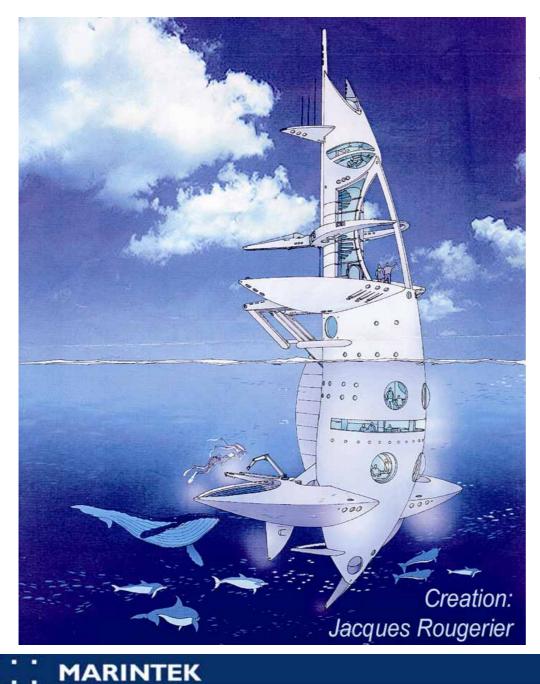
MARINTEK




Increased Russian business

2005-06-20 31


A game-changing combination of technologies from SINTEF


MARINTEK

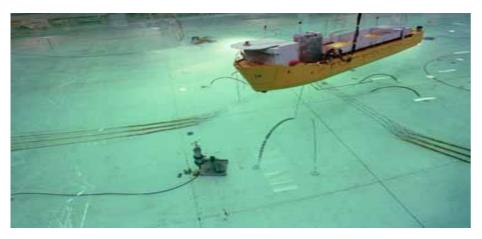
32

2005-06-20

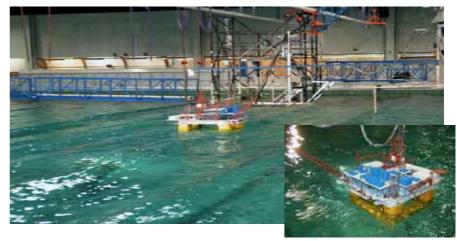
SeaOrbiter at the Jules Verne Exhibition in Paris 2005

SINTEF

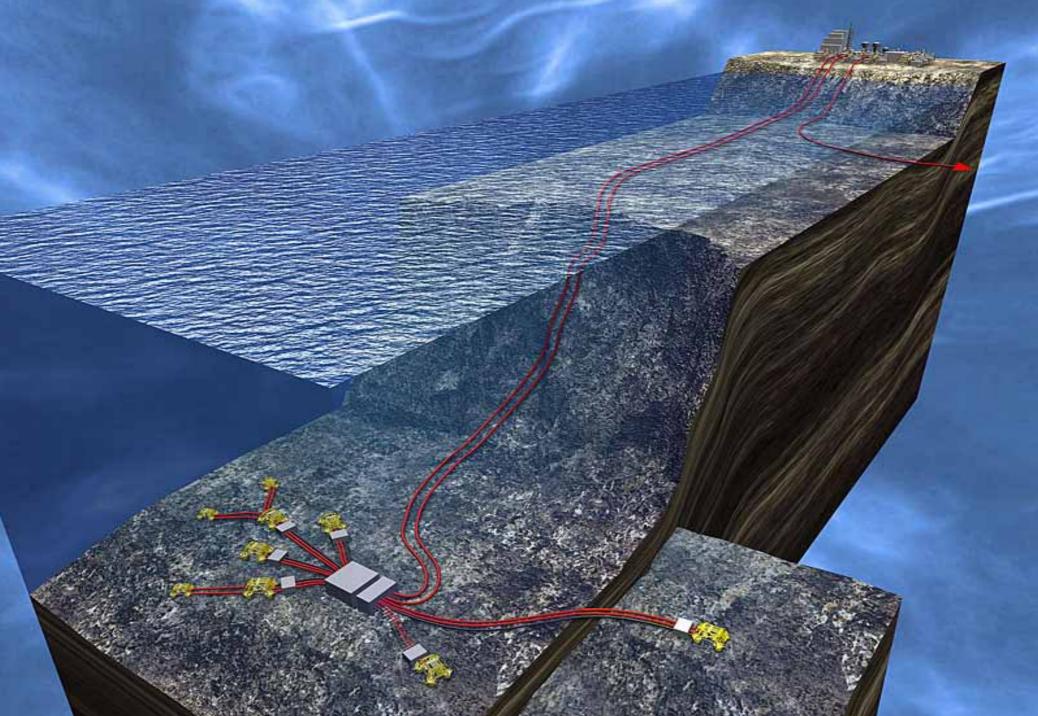
Verification tests


Åsgard A in Norway

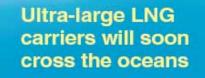
Snorre II (B) in Norway



Terra Nova Project in Canada



MARINTEK


Thunder Horse, Gulf of Mexico

LNG-Chain to US and EU:

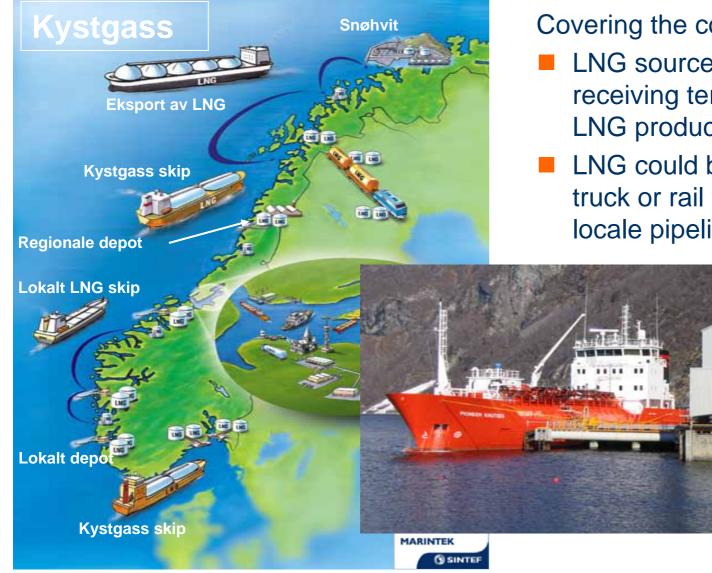
Global change in transport needs

- Innovative and profitable logistic solutions

20.0

- Testing and prediction of wave and sloshing loads -

() SINTEF


MARINTEK

A-1-1-1

Small scale distribution of LNG

MARINTEK

Covering the coast of Norway

- LNG source base load LNG or receiving terminals or small scale LNG production
- LNG could be further distributed by truck or rail way or distributed by locale pipeline.

The natural gas chain

Production

MARINTEK

Processing and liquefaction

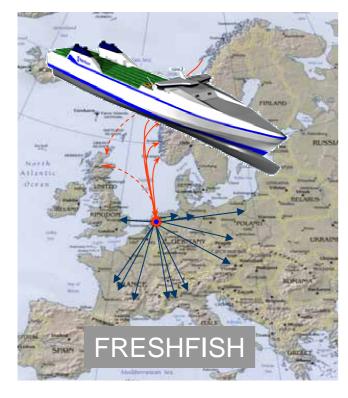
Shipping

Transmission/distribution

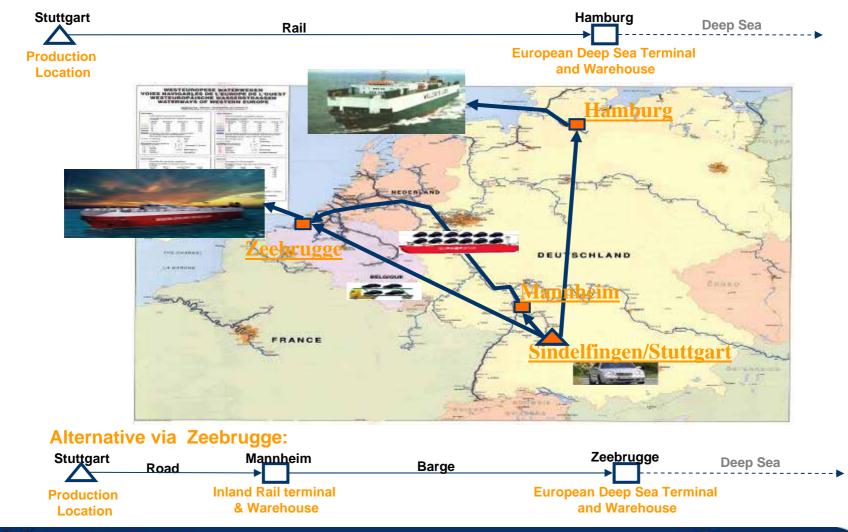
End use

Main areas for MARINTEK activities are:

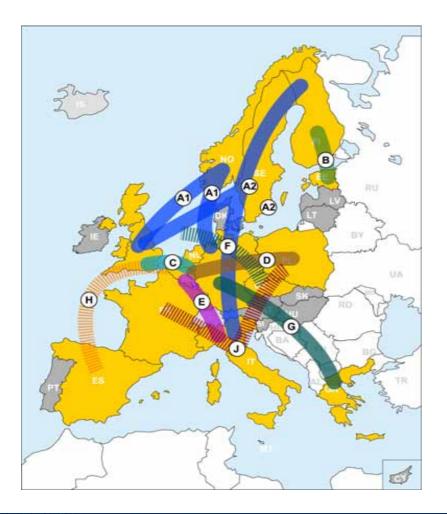
- Technologies for loading and transport of LNG
- Technologies for end use
- Analysis of supply systems for natural gas


Offshore offloading & LNG FPSO

mitigation of an collision risk
reducing terrorist attack threat
preventing costly civil works


Maritime Transport solutions

Multimodal logistics – combining deepsea, shortsea and inland waterways



MARINTEK

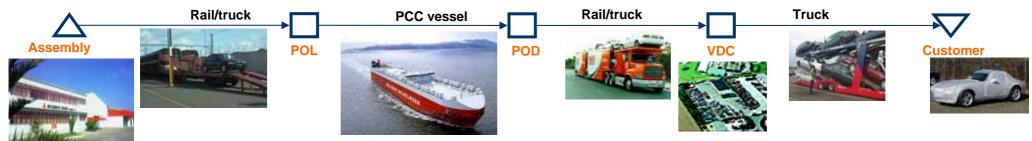
🕥 SINTEF

2005-06-20

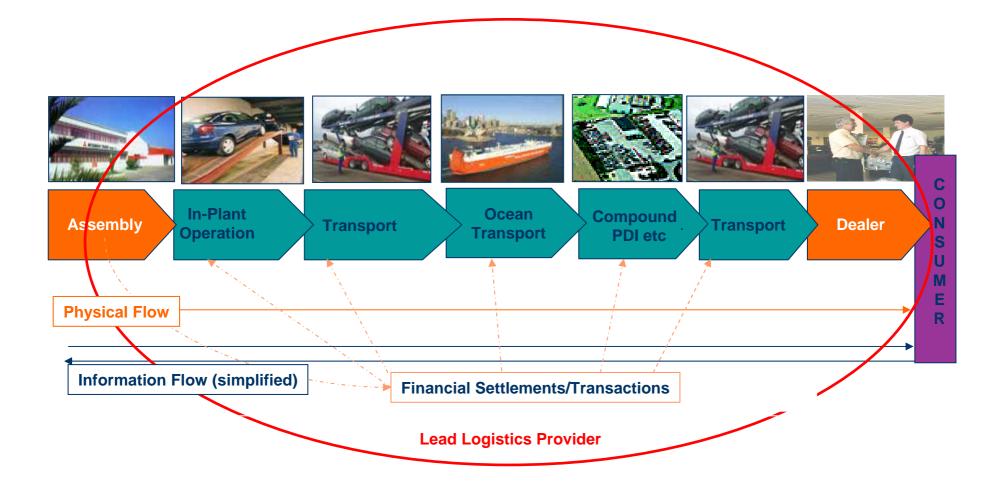
Business cases provide practical improvements and realistic recommendations

MARINTEK

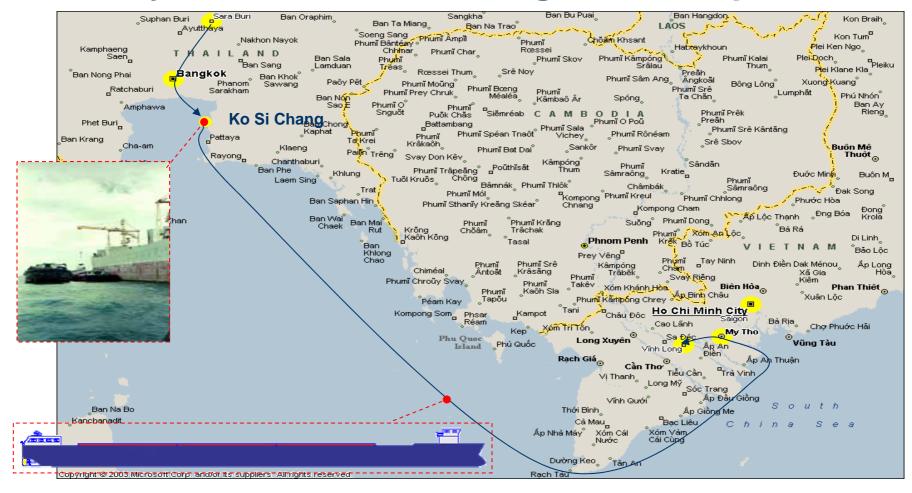
Several pan-European real-life business cases


- Demonstrations (continuos lines) full project duration
- Feasibility studies (dashed selections) in 1st project phase

Door to Door operations in new car distribution chain is an extended service compared to traditional RoRo shipping


"Door-to-door new car distribution"

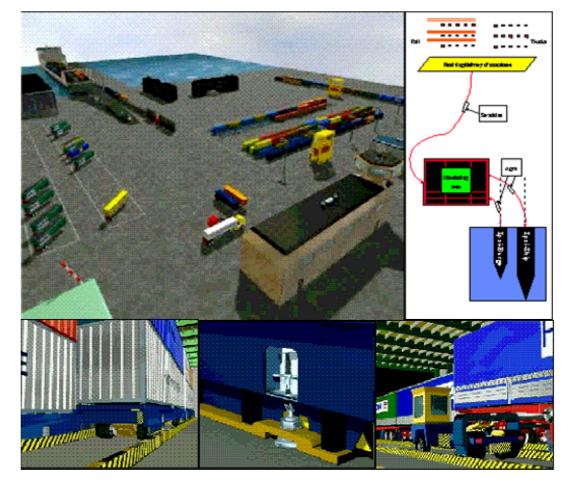
Lead Logistics Provider service – Total Responsibility for Integrated Logistics


Local bulk transport solution using using Handysize vessels and barge transshipment

2005-06-20

45

Local bulk transport solution using using Handysize vessels and barge transshipment



IPSI - Technology for the cargo handling

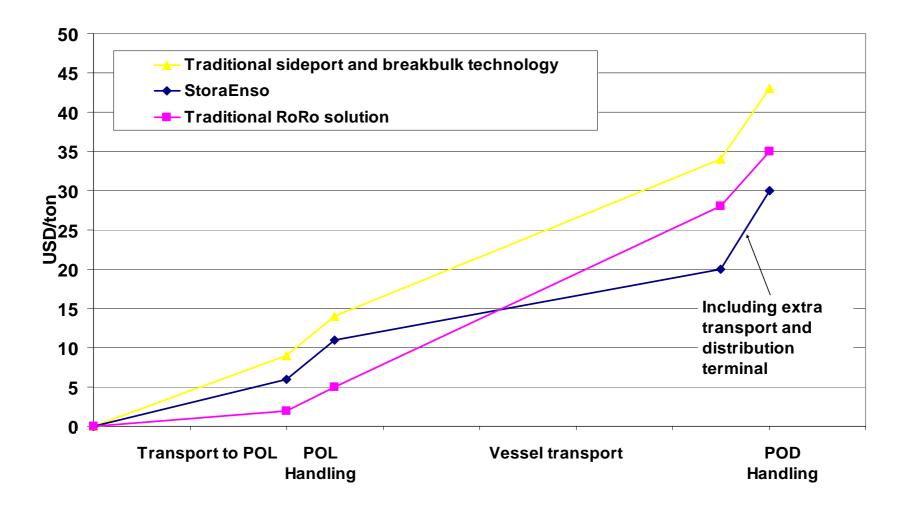
- State-of-the terminal lay-out
- Fast cargo handling
- High capacity
- Reduced area requirements
- State-of-the-art multi modal solution
- Automatic guided vehicles, (AGV) operations
- 2400 TEU per day
- 400 TEU per hour

MARINTEK

Source: HamworthyKSE, IPSI – A Revolutionary Concept for Intermodal Transport

IPSI - Concept terminal

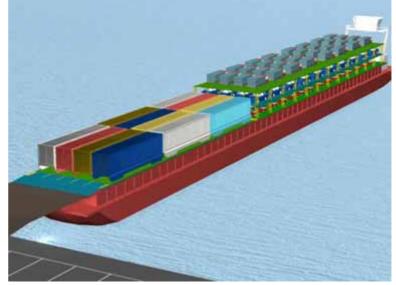
IPSI – vessel is purpose built to accommodate specialised container boxes (SECU) carrying up to 80 tons each on RoRo cassettes



SECU = Store Enso container unit

Distribution cost comparison from plant to continental terminal

The Interbarge concept


- The Interbarge transport concept focus on combining transport of paper and other commodities suitable for unitizing with transport of new cars, heavy machinery and other road units
- Targets :

- To improve the cost position of RoRo based transport solutions by utilising the European waterways.

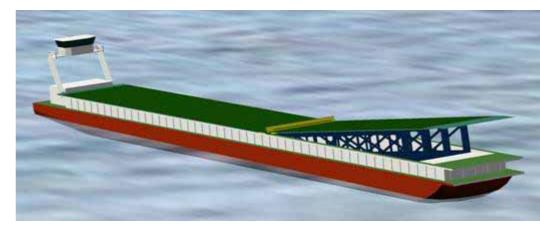
- Reduce emissions and fuel consumption facilitated by reduced light ship weight, low resistance due to optimized hull shapes and state-of-the-art propulsion systems.

Localisation of production sites in Europe / Main inland waterways:

The Interbarge concept – basic design; Comparing the new design with a conventional **RoRo vessel design**

Main data MS"VERA":

- LOA: 108.5 m
- Breadth moulded 11.4 m
- Draught light ship 1.2 m
- Draught loaded 2.5 m
- Payload 1450 tons
- **Displacement light ship 1200 tons**


MARINTEK

Main data NEW DESIGN:

- LOA:
- Breadth moulded 11.4 m
- Draught light ship 0.95 m
- Draught loaded 2.63 m (design)
- Payload 2050

- **110 m**

- tons(design)
- **Displacement light ship 950 tons**

This new design is designed for transporting cement in dedicated tanks and mainly empty containers to USA and containers with cargo to Caribbean.

54

Increased capacity on High Speed Crafts (Multi-hull)

Let's imagine that we move 10-15 years in the future...

Cruise and Leisure

Deep Sea Shipping

Short Sea Shipping

Inland Shipping

Floating Infrastructures

Be prepared to handle critical situations

MARINTEK

57

2005-06-20

Operations in hard weather conditions is challenging for people and constructions

Energy production from wind, waves and current need in dept knowledge in marine technology

MARINTEK

2005-06-20 59

Technical Operation Competence Centre

Presentation 8. June 2006, Brage Mo, MARINTEK

Objective

TOCC improves competence by employing tools for performance analysis and decision support suited to the maritime industry.

TOCC tools are beneficial and easy to use. They are also transparent and consistent for better understanding and easier implementation.

The concept of TOCC

MARINTEK

() SINTEF

Current situation vs. Best practice

- Vot optimised reporting & performance assessment method
- Limited performance assessment support

- ▲ Simple and smart reporting
- A Quality feedback
- ▲ Focus on critical systems

MARINTEK

- ▲ Clear procedures
- ▲ Customised training

VLimited time to evaluate vessel data

VReporting sub optimal

- Limited tools / support / authority for operation optimisation
- VOperation/performance indicators not optimal
 - -Technical condition vs. company strategy?
 - -Over-all fleet performance?

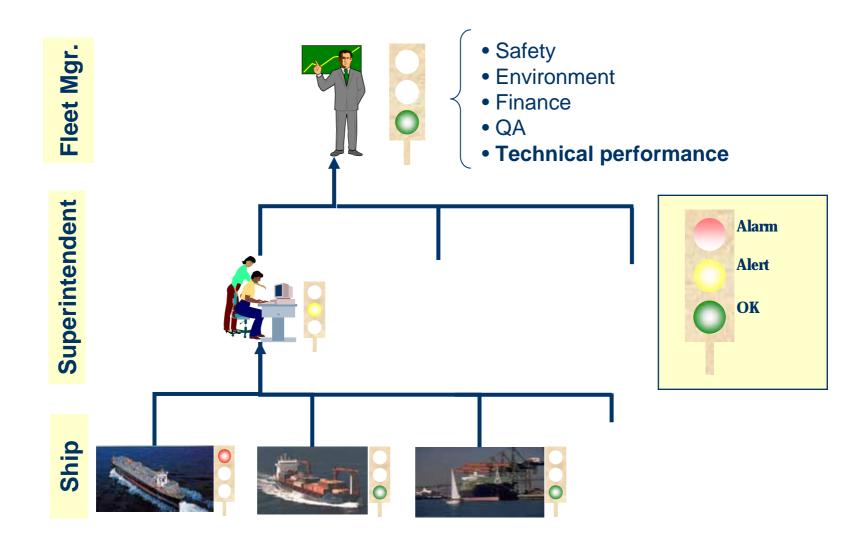
Little co-operations
Lack of standards
Lack of best practice

- Monitoring of indicators
- Standardised reporting & monitoring
- Cross-fleet comparison
- Proactive planning
- Customised training

- Cross-company comparison
- Common performance standards
- ▲ Competence sharing

Benefits for TOCC participants

- TOCC offers new methods and tools for efficient technical operation
- TOCC addresses common challenges, but individual solutions are possible
- TOCC will ensure the development of an active competence network.
 - research and university sector
 - classification, authorities
 - ship owners
 - system and equipment suppliers
 - offshore industry


MARINTEK

TOCC gives the direction for R&D within shipping technical operations.

Indexing fleet performance

TOCC cases

Performance for critical systems

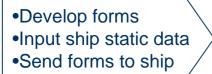
- Index for main engine performance data
- Index, other systems
 - Auxiliary engines
 - Other critical systems
- Hull and propeller analysis

General status:

- M.E. performance model specified and tested in SW tool with data received from ships.
- Findings improved by ship owners.
- New reporting form for performance tests validates info and sends xml messages.
- Guidelines testing and collection of measurements under development.
- Onboard implementation started May 2006.
- Hull and propeller model not finished for testing.
- AE performance model development has started.

Existing standards

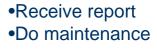
- The project have reviewed some "standards" describing engines. One initiative is SFI, often used by Norwegian shipowners and yards (A Functional classification of the ship) :
 - 1. Generals ship arrangement
 - 2. Hull
 - 3. Loading equipment
 - 4. Ship equipment


- 5. Equipment for crew and passengers
- 6. Machinery main components
- 7. Systems for machinery main components
- 8. Ship common systems

6 - Machinery main components

- 601 DIESEL ENGINES
- 625 EL. GENERATOR/EL. MOTOR PLANTS
- 628 SPECIAL PROPULSION AGGREGATES
- 631 FIXED PROPELLER PLANTS INCL. NOZZLES
- 634 CONTROLLABLE PITCH PROPELLER PLANTS INCL. NOZZLES
- 636 SPARE PROPELLERS
- 637 MAIN REDUCTION GEARS W/THRUST BEARINGS & COUPLINGS
- 638 CENTRAL GEARS (JOINT AUXILIARY GEAR, NOT FOR PROPULSION)
- 641 MAIN BOILERS
- 644 AUXILIARY BOILERS
- 646 EXHAUST GAS BOILERS
- 647 STEAM CONVERTERS
- 648 CENTRAL HEATING & THERMAL OIL BOILERS
- 651 MOTOR AGGREGATES
- 665 HARBOUR & EMERGENCY AGGREGATES W/EQUIPMENT
- 667 SHAFT GENERATORS

TOCC Procedures

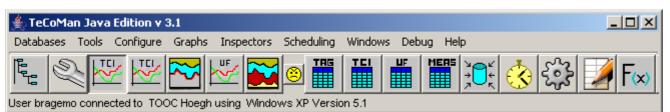


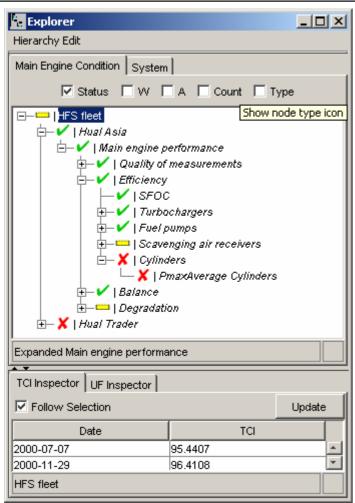
Install forms

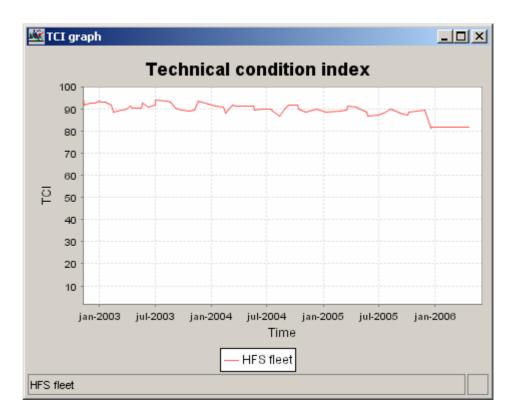
- •Input measure data
- Validate
- •Send data to TOCC
- •Use email as prot.

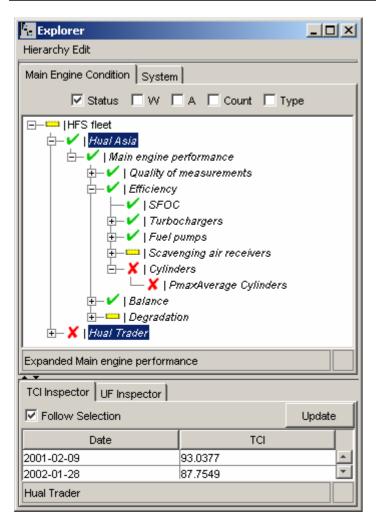
- •Validate
- •Store data
- •Analyze
- •Develop report
- •Send report to ship

TO CC	Performance Registration									
Report Date Static Information	TO CC Marchan	Performance Registration								TO
Report name Vessel name IMO code Measurement from No of main engines	<u>Main Engine measure values</u> Chief Engineers name Total running hours Start time Stop time Engine room temp [C]			Scaver	ngine rec	elve temp [C] press [bar0] press [bar0]		F	evolutions [rpm] uel rack index haft power [kW] ff. power[kW]	,00 ,00 ,00 ,00
Engine ID Maker Type Serial No. Max power [kW] Max Revolution [rpr	Turbocharger ID Revolutions [rpm] Air inlet [C] Air filter pressure drop [mmWC] Exhaust inlet temperature [C] Exhaust outlet temperature [C]	1		Air ink Air out Air pre Water	et [C] tlet [C]	r cooler ID >p [mmWC]				
Fuel valve operation	Cylinder ID Compression pressure [bar] Max pressure [bar] Mean indicated pressure [bar] Exhaust temperature [C]	1 2		3	4	5	6	7		
Masters name Start time Latitude Longitude	Fuel pump index VIT index Revolutions								-	
Stop time Latitude Longitude Wind direction [True Wind force [Knots]	<i>Fuel and energy efficiency</i> Bunkering date Supplier Bunkering port Heat value [MJ/kg] Density at 15 c [kg/m3]		Flow mete Shaft revo Shaft tota	er volume [l] er temp [c] olution counter il revolution	-	art reading Stop reading		Density at flow meter [kg/m3] Fuel consumption [m3/h] Fuel consumption [kg/h] SFOC [g/kWh] Comment		00 ,00 ,00 ,00
	Viscosity at 50 c [cSt] Inlet temp at fuel pump [C] Inlet pressure at fuel pumps [bar]			iometer time I energy (Kwh)		Print	t	Save	Load	Submit by Email

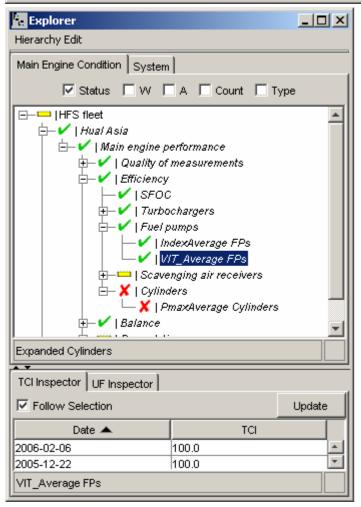

. .

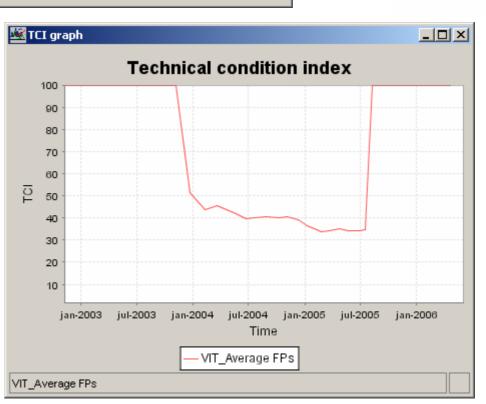



ME performance specification



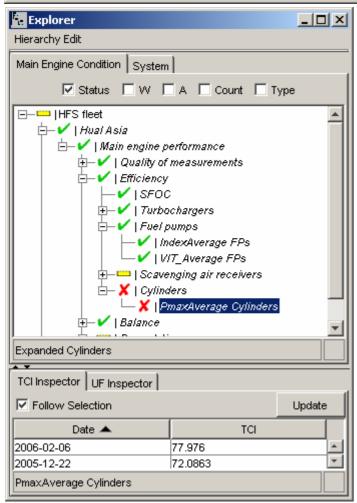
🛓 TeCoMan Java Edition v 3.1										
Databases Tools Configure Graphs Inspectors Scheduling Windows Debug Help										
ᅊᇃ 🍭 🗠 🗠 🚰 🖉 🖉 🛗 🛗 🛗 🏹 🏈 🎲 🃝	F⇔									
User bragemo connected to TOOC Hoegh using Windows XP Version 5.1										

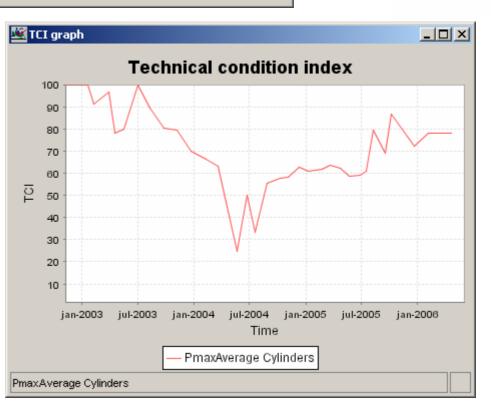



誊 TeCoMan Java Edition v 3.1 Databases Tools Configure Graphs Inspectors Scheduling Windows Debug Help E TAG \forall UF 🝾 ေိန F_(x)

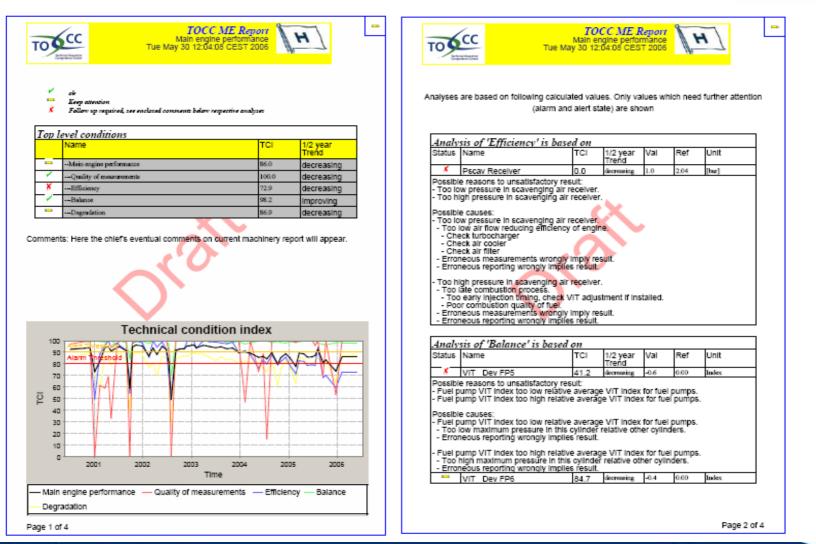
User bragemo connected to TOOC Hoegh using Windows XP Version 5.1

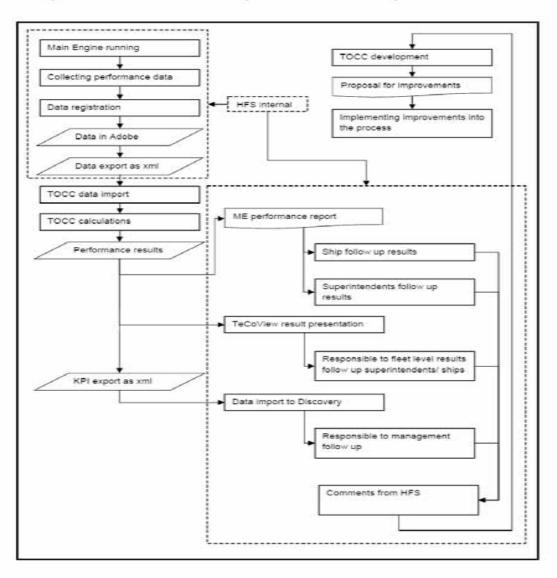
MARINTEK




SINTEF

誊 TeCoMan Java Edition v 3.1 - 🗆 × Databases Tools Configure Graphs Inspectors Scheduling Windows Debug Help E TAG ₩₩ UF కొండ F_(x)


User bragemo connected to TOOC Hoegh using Windows XP Version 5.1



TOCCC **Technical Operation Competence Centre**

TOCCC

. .

General

Situation

- Need for better input
- Need experience to conclude
 - Realistic improvement in data quality to stabilize TCI results
 - Measurements accuracy influence on indicators

Improvements

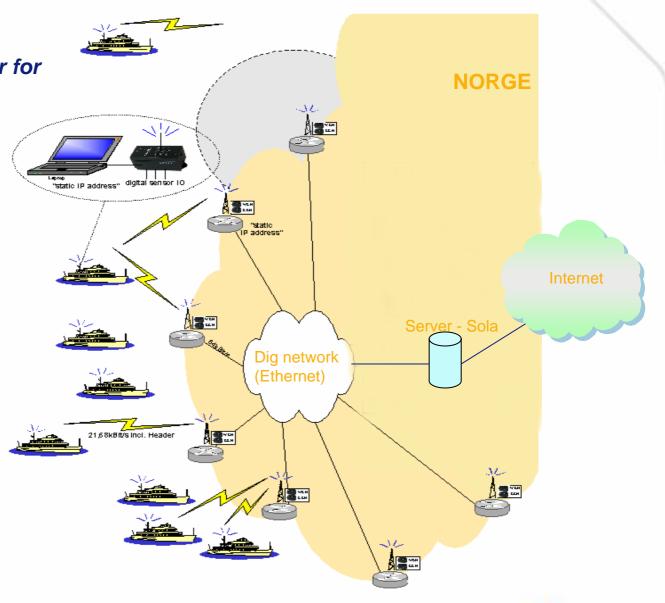
- Ships get insight in TCI ME model
 - Specifications
 - Results
- Ships focus on procedures for measurement collection
- A template that give feedback (hint) about illogical readings

Conclusion

Systematic analysis of operation data will improve the ship operation and quality.

TOCC analysis will focus from ship managers viewpoint to expose performance that should initiate corrective action.

TOCC will provide ship managers with tools and competence to improve operation and quality through collaboration between relevant parties.



VHF Data

Communication carrier for the maritime market

telenor

VHF Data – What is done?

- A pilot project was performed on a limited network with 6 VHF base stations, each with two radios. Various types of ships participated in the test for a period of two years
 - We have favourable experiences regarding stability, range and functionality. It was easy to set up local networks on ship LAN and to adapt various software applications to the system

VHF Data – What is done?

- In the test period, we have had close cooperation with the Norwegian fishery authorities. We have developed a new positioning database and a tracking system in accordance with international standards for tracking of fishing vessels.
- We have also developed a fishery catch reporting system in accordance with the SHEEL project (Secure and Harmonised European Electronic Logbook)
- The system has been approved by the Norwegian Interbank Payment Centre (BBS) as a carrier for credit card and online payment terminals on board passenger ships

VHF Data – Main project

- Based on the experience from the pilot project, and feedback from customers, a feasibility study for improvement of the system was performed in cooperation with the manufacturer.
- The suggested improvements are included in the main project

- Telenor has now decided to build a VHF Data radio system on 50 base stations, covering the coastline from Oslo to Kirkenes (near the Russian border in northern Norway).
- The system will be in full commercial operation by 1st quarter 2007.
- The project includes a new customer service platform as well as other system improvements:
 - IP speed up on 25 kHz channel
 - Crypto
 - Automatic Web and e-mail compression
 - Web broadcast
 - New VHF Data radio using 225 kHz bandwidth

VHF Data – functionality (1)

- IP protocol with Ethernet interface
 - Enables simple interface with other equipment and applications
- Fixed IP-address on board the vessel
 - May be addressed from shore to ship without active action onboard
- Always connected
 - Well suited for "real time applications".

VHF Data – functionality (2)

- The system continues data transfer automatically after a break in communication, e.g. when going outside coverage
 - There is no need for the operator to intervene, the system detects when the connection is resumed and continues the data transfer from the position where the break took place
- Several in and out interfaces, both analogue and digital, direct from the radio equipment
 - Simple connection to instruments, GPS and local networks (LAN)

VHF Data – funcionality (3)

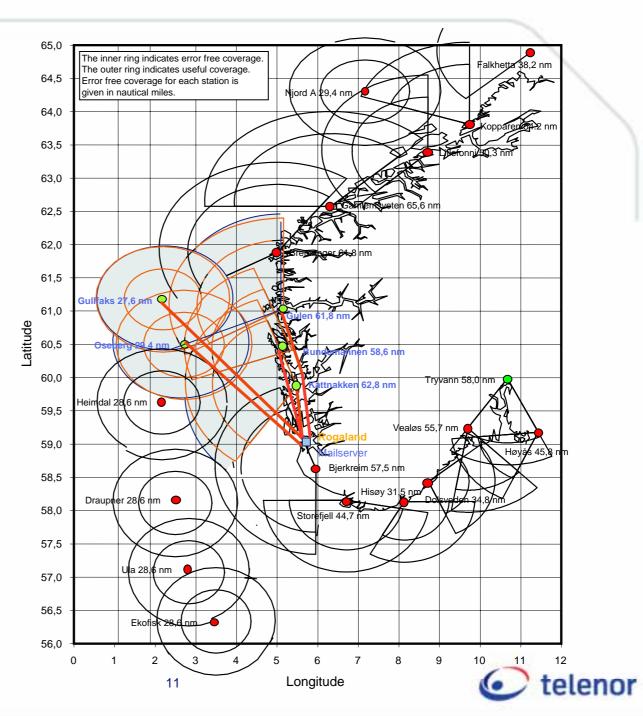
- Extensive internal memory in the radio equipment
 - May be operated without any external PC connected
 - For instance is the complete protocol for tracking of fishing vessels based upon the internal memory of the radio

VHF Data – funcionality (4)

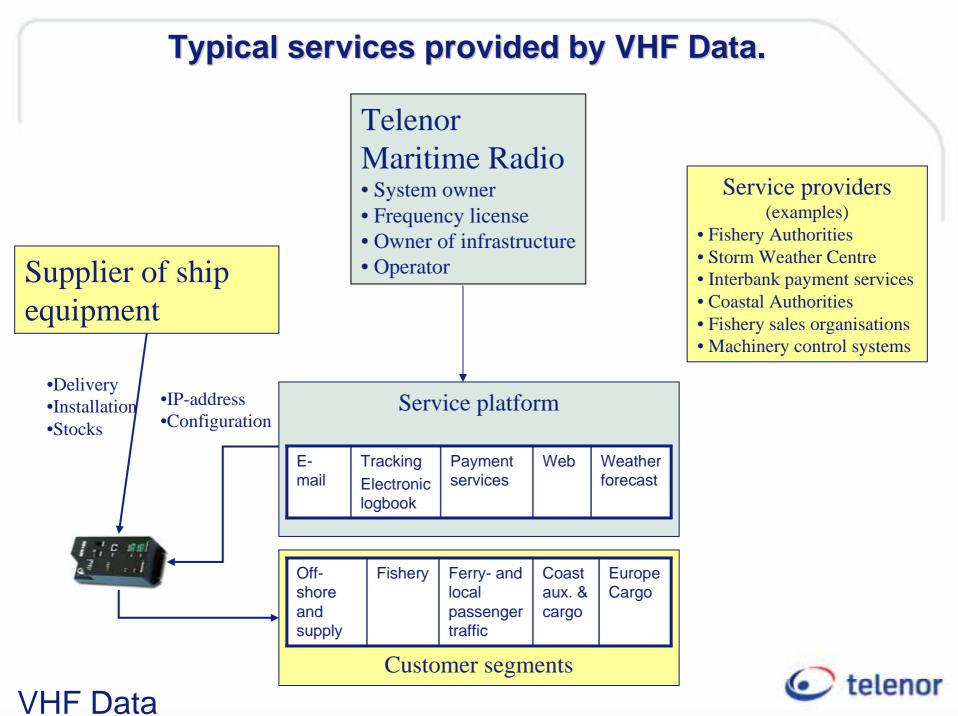
- Data parcels from different users and services may be transmitted on the same channel, and various IP packets may be given different priority.
 - For example, it is possible to connect at the same time several active payment terminals to one radio that allready is in use for e-mail. IP packets that contain transaction data from a bank terminal may be given priority and are transmitted immediately, even if the radio is engaged with e-mail og websurfing.

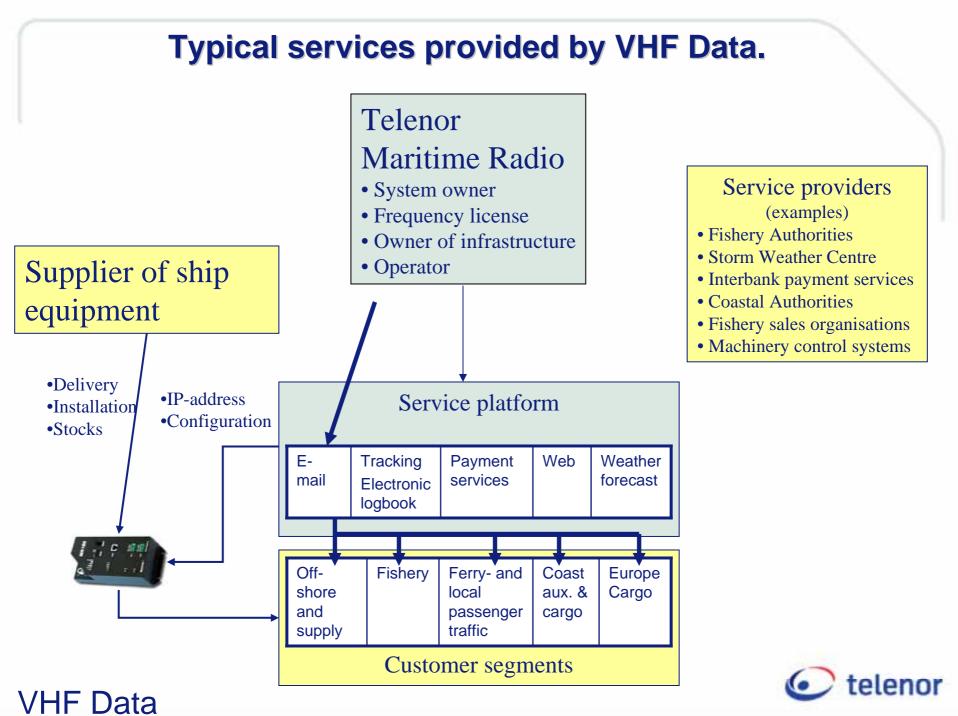
VHF Data – funcionality (5)

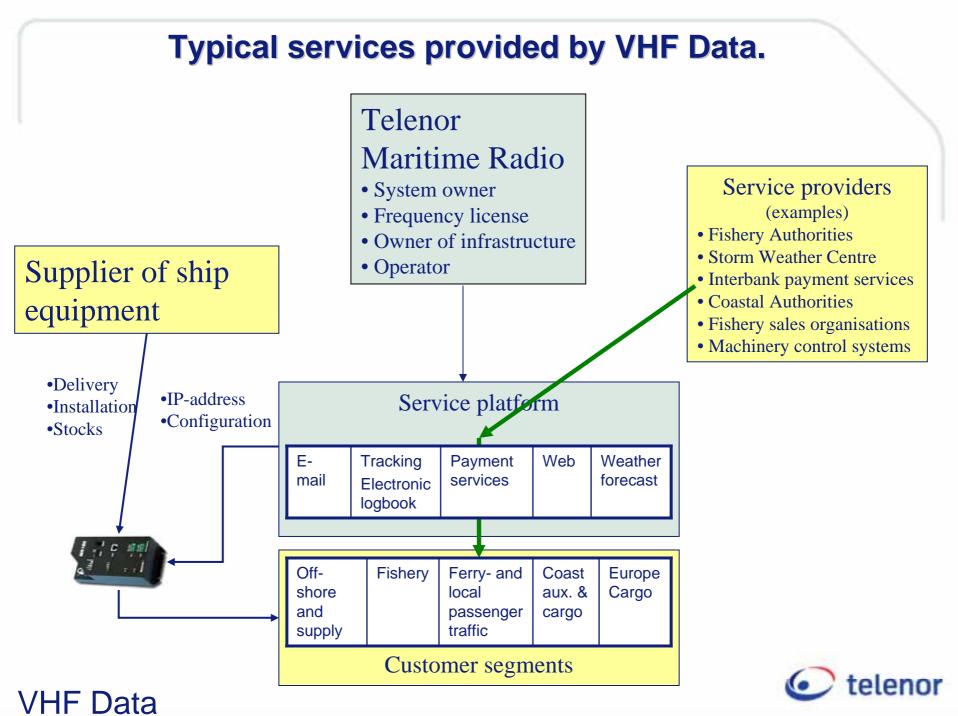
- The system will automatically choose the next available channel if there is no capacity left on the primary channel.
 - Under heavy trafic, larger volumes of data are moved to the next available channel.
 - In areas of constantly heavy trafic, it is of course possible to equip the base stations with more channels.

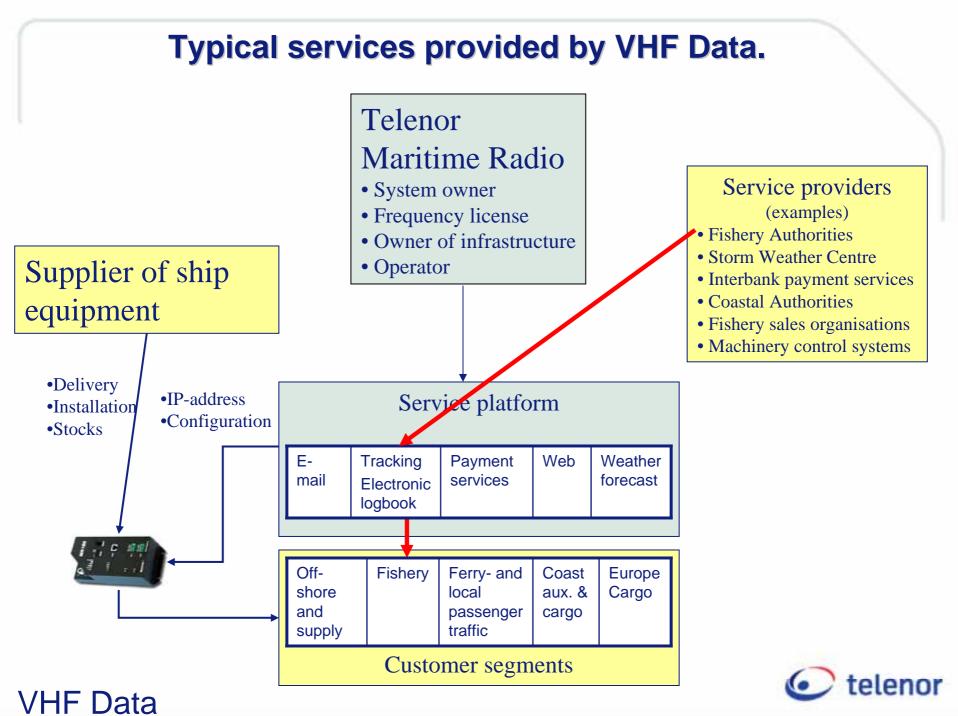


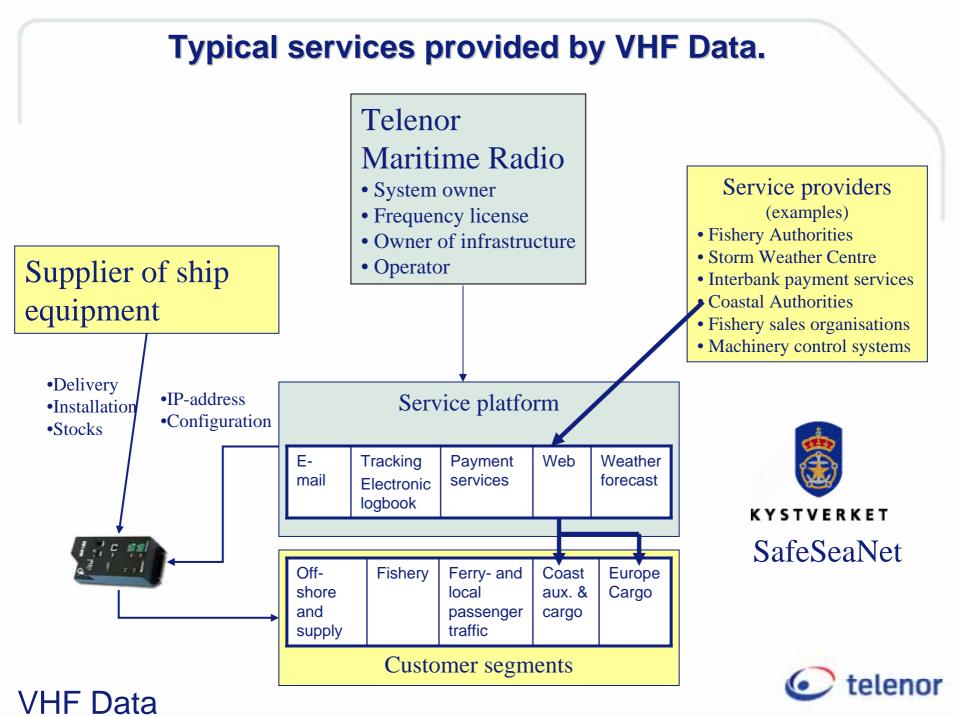
VHF Data Located on existing VHF base stations

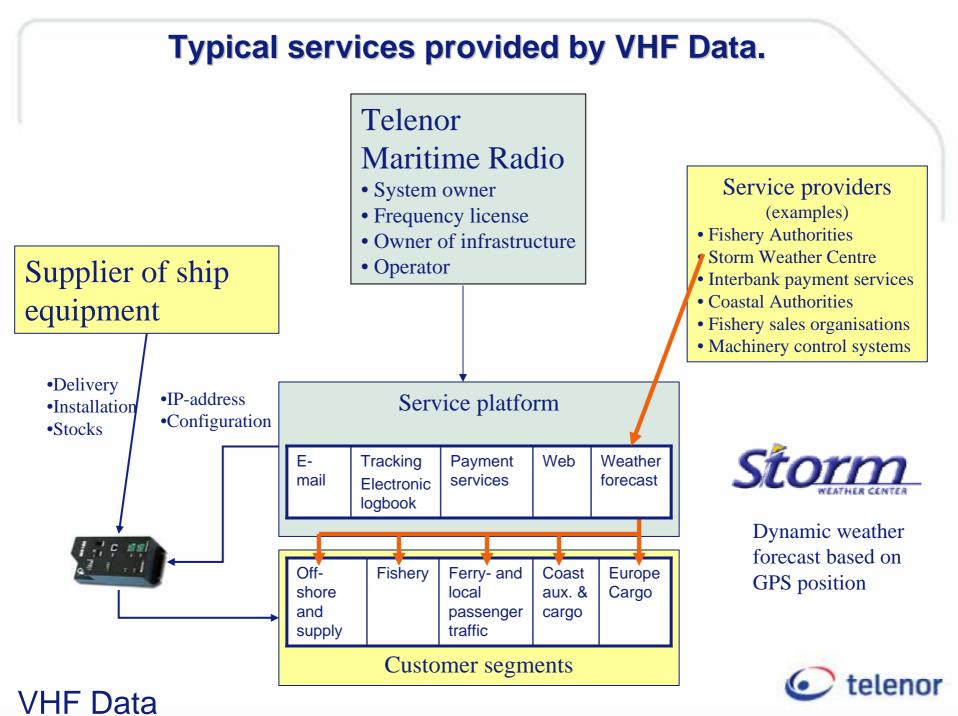

Under pilotingReady for construction

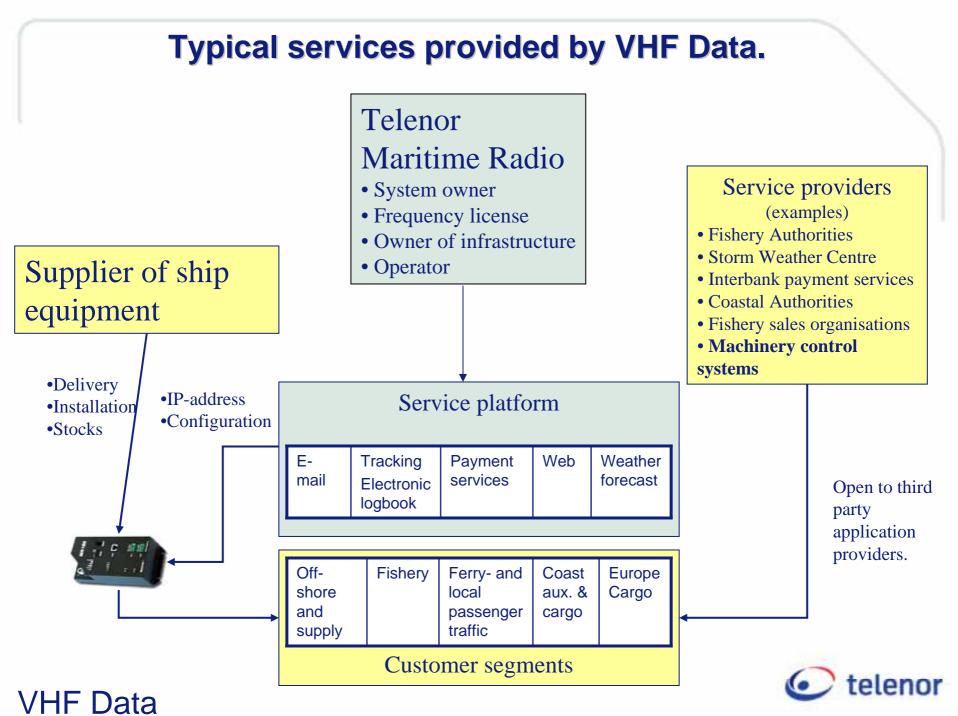

- Basic coverage of the Norwegian coast, the North Sea and Haltenbanken requires construction of VHF Data on about 50 base stations
- We have about 130


 existing VHF base stations which may be used if needed, enabling better local coverage and increased transmission capacity,




2006年6月20日





VHF Data — Contracts as per 2. February 2005

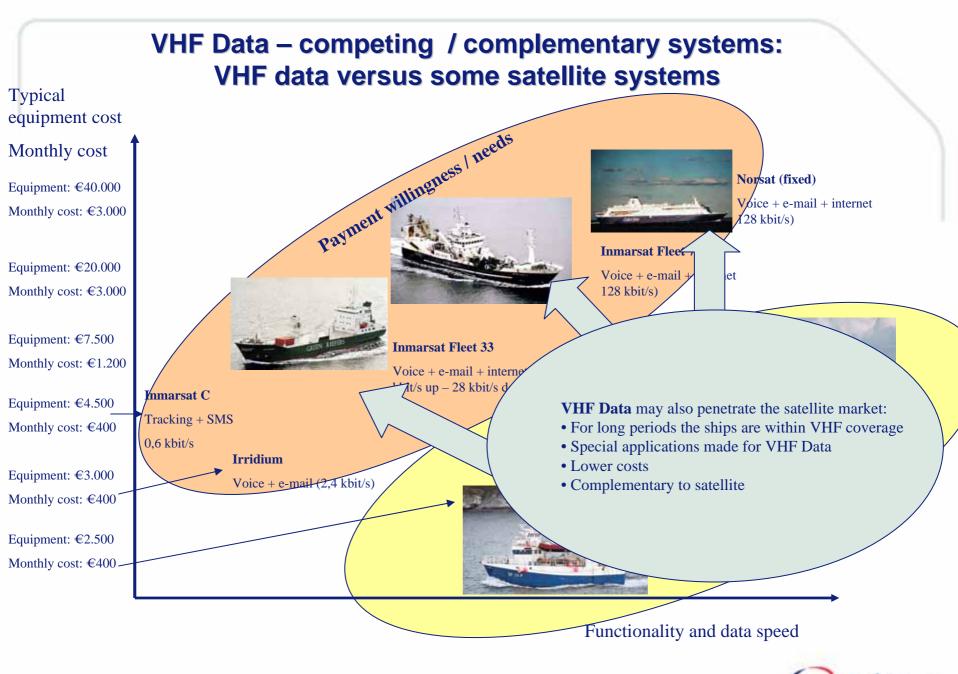
Fosen trafikklag:

- Bastøferga (3 ferries)
- 9 payment terminals with automatic cashier accounts
- (e-mail)
- The company owns 18 vessels.

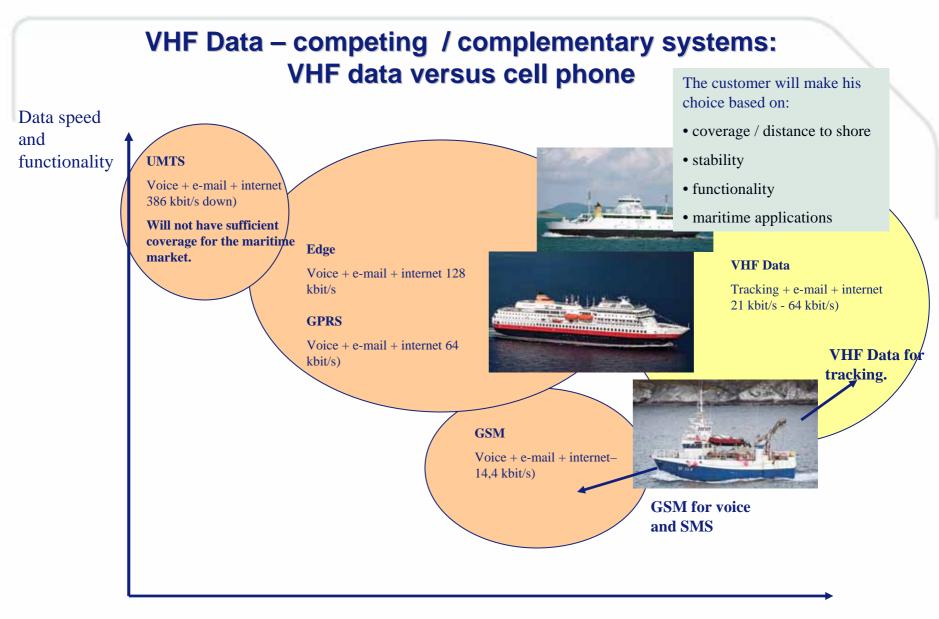
3 X

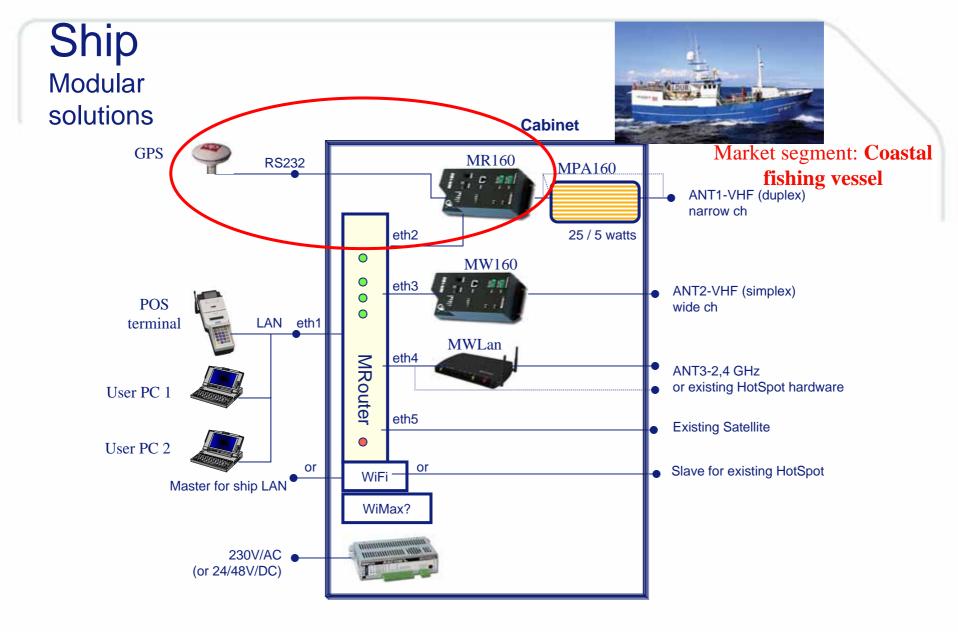
HSD:

• 1 ferry + 1 fast passenger craft

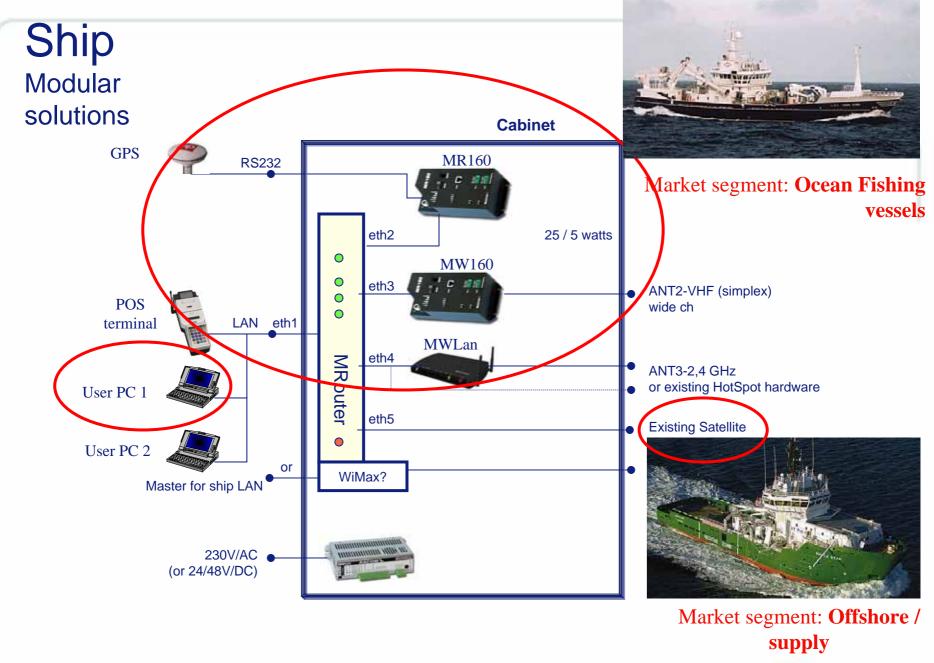

- (e-mail)
- The company owns 40 vessels

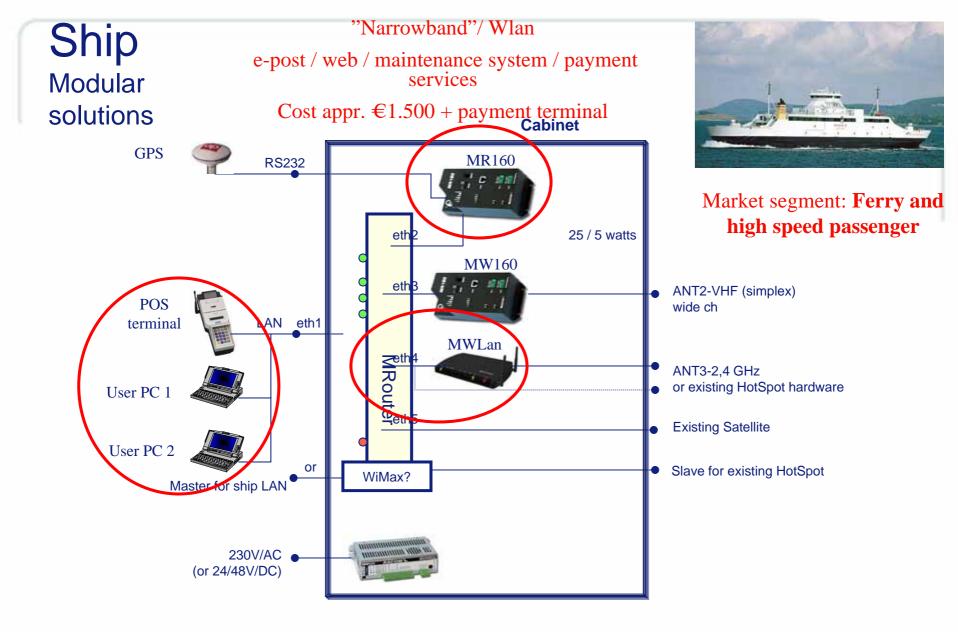
Rødne ship owners:


- 1 fast passenger craft
- 1 payment terminal
- e-mail
- maintenance system
- The company owns 16 vessels



elenor


Stability and coverage



telenor

Specification Main Engine Performance model

Hual Asia and Hual Trader

Revision: 0.i.2 Date: 5th of May 2006

Indexing

This specification describes calculations used to decide main engine performance. The performance is a sum of index values calculated from measurements.

The index values range from 0 to 100 where 0 is extreme unacceptable performance and 100 is design performance.

The measurements and calculated index values are kept in a database. The index values make it easier to interpret and compare performance over time and between similar units as ships, engines, turbochargers, etc. Values and corresponding time are presented in tables and graphs.

It is advantageous to run the performance tests collecting measurements at steady state at the same service condition each time for better quality in measurements and index model results. The model is more correct near the recommended power of 85% of MCR.

Summation of indexes

An index tree is used to structure the main engine performance and to sum up measurements from performance tests. Summation of indices into higher level indices in the index tree is done by functions like weighted sum, mean, worst case, etc. Refer index tree in this specification.

Converting measurements to index values

The example in figure 1 illustrates how measurements are converted into index values. Ideal relation between cylinder maximum pressure (Pmax) and mean effective pressure (MEP) from project guide is shown as the blue line. The slope of this curve is used to correct Pmax measured at (1) to Pmax at standard MEP (15.14 bar) at (2). Correction of Pmax to a standard MEP is essential if measurements shall be comparable through time.

The index function (red, yellow and green lines) convert the corrected value (2-3-4) to an index value [0,100] and a status; red, yellow or green.

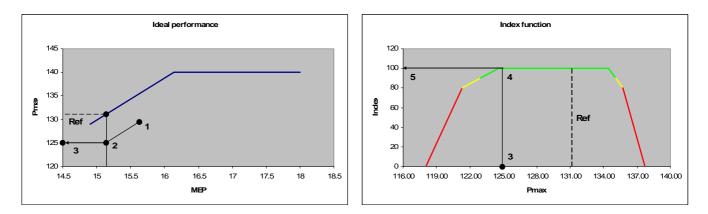


Figure 1: Conversion of cylinder maximum pressure measured (1) to corrected value (2-3-4) to index value (5).

Results

Example of result presentation in the software TeCoView is shown in figure 2 below. At left the corrected measurements are presented as points interconnected with straight lines. At right the corresponding index values are presented as points interconnected with a step curve to indicate that index values are valid until new values are obtained.

The results below show that engine performance with respect to Pmax has improved and is acceptable after 2003.

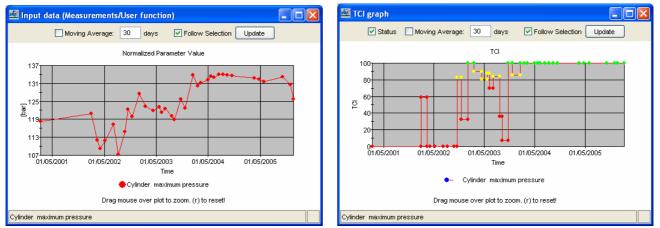
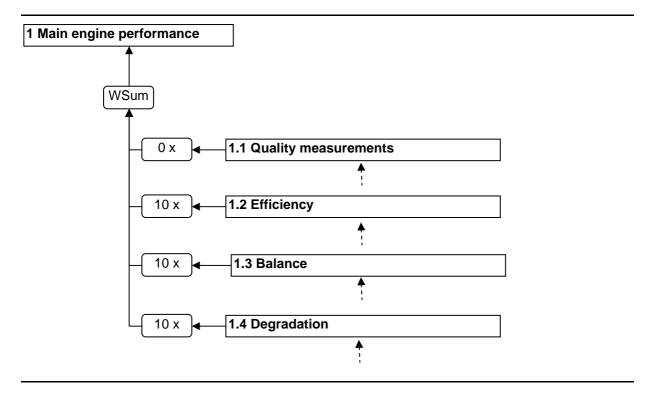
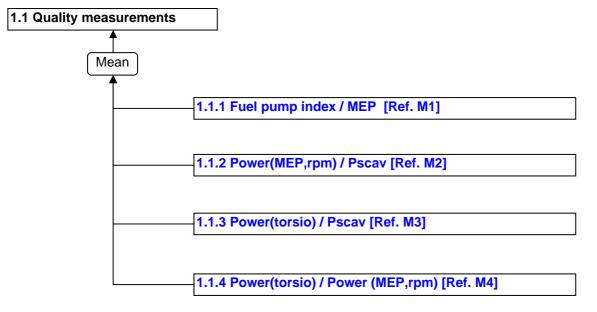
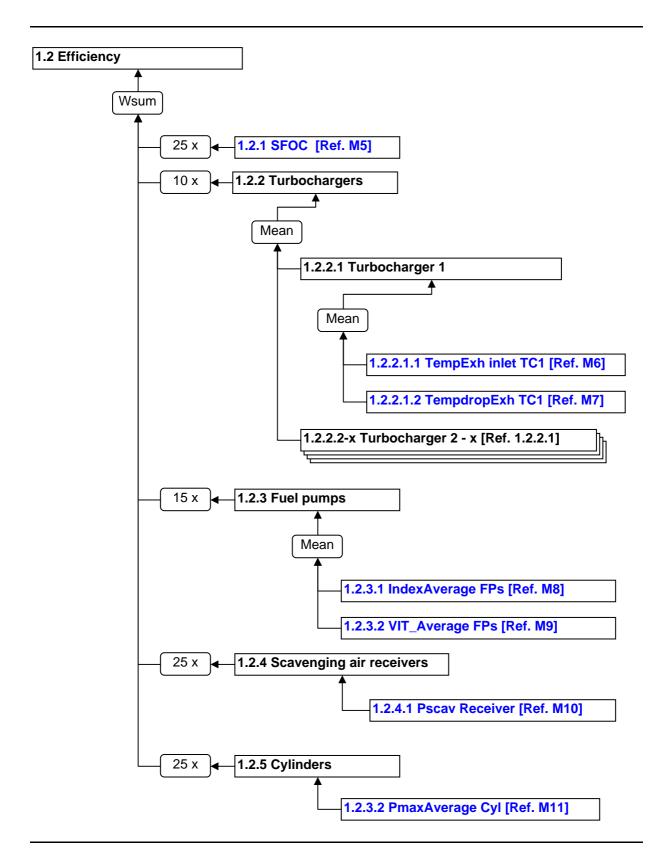


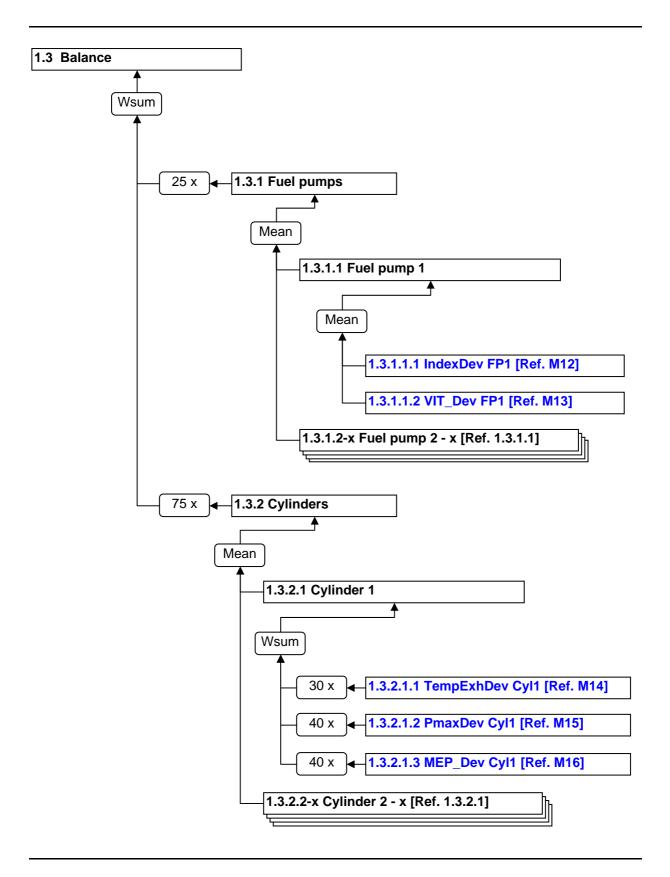
Figure 2: Example of how results are presented in the Technical Condition Viewer.

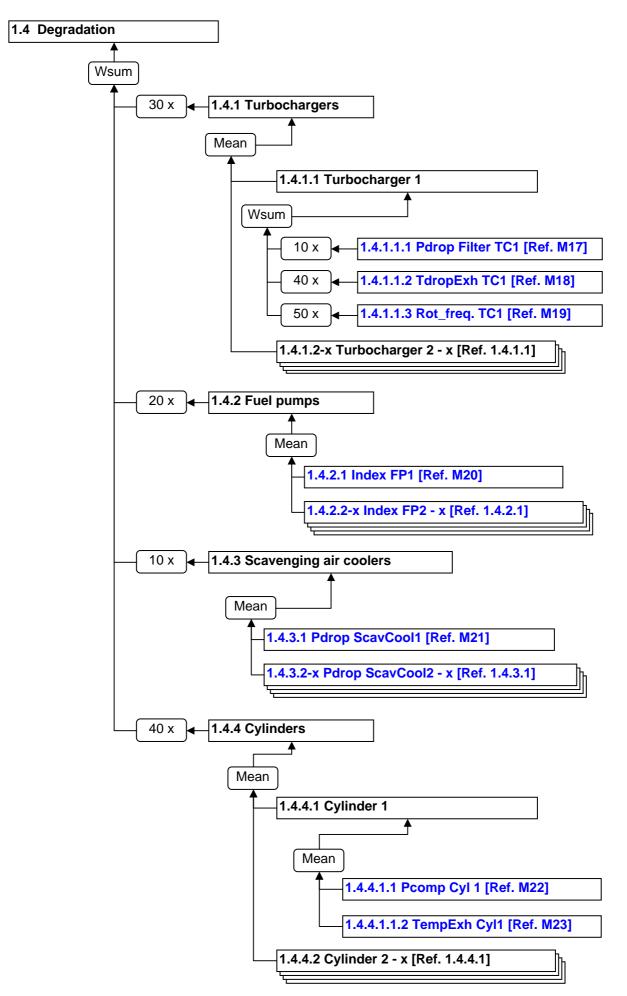
It is important to have in mind that low index values can be caused by:


- Bad performance.
- Bad instrumentation.
- Bad registration.


Instrumentation and registration quality should be checked before erroneous conclusions to poor performance.


Results are also presented in reports that easier can be submitted to the ships. These reports are also in use at office. The reports focus on the performance at a high level and at measurement level where follow-up and attention are required, respectively red or yellow status.

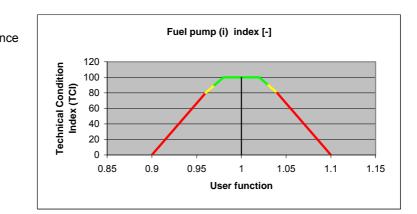

Reference documentation


Reference documents used to develop indexes are performance tests, sea-trials, shop tests, project guides, experience and statistics.

M2. Power(MEP,rpm) / Pscav {to be defined}

M3. Power(torsio) / Pscav {to be defined}

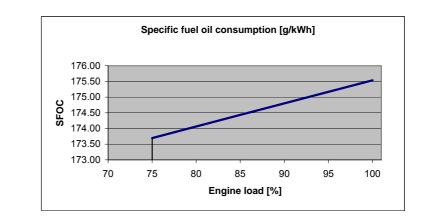
M4. Power(torsio) / Power (MEP,rpm)


Acceptable deviation between power from torsiometer and power calculated from MEP and rpm given in index function.

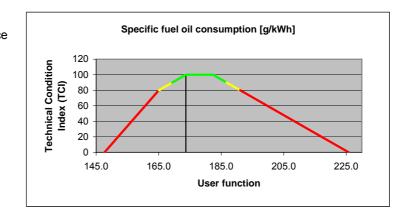
Reference value:

1.00

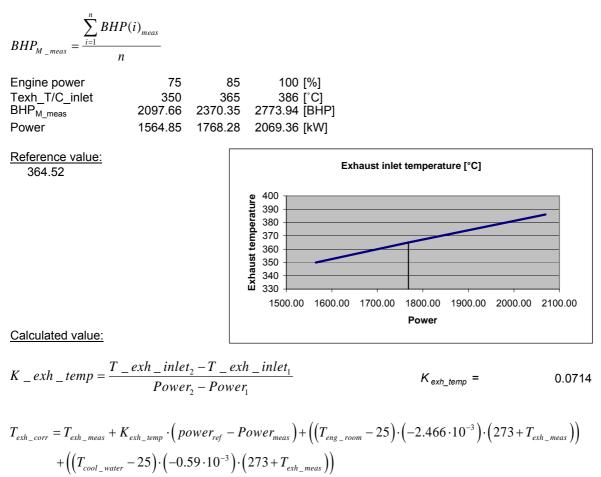
Index function

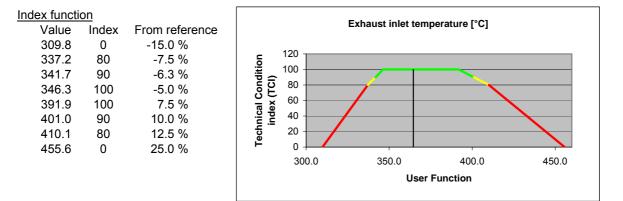

SFOC	Index	From referer
0.90	0	-10.0 %
0.96	80	-4.0 %
0.97	90	-3.0 %
0.98	100	-2.0 %
1.02	100	2.0 %
1.03	90	3.0 %
1.04	80	4.0 %
1.10	0	10.0 %

Ideal performance	75	85	100 [%]
SFOC _{BHP}	129.58	130.13	130.95 [g/BHP]
SFOC _{kWh}	173.69	174.43	175.54 [g/kWh]


Reference value:

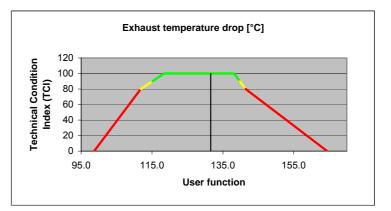
173.70



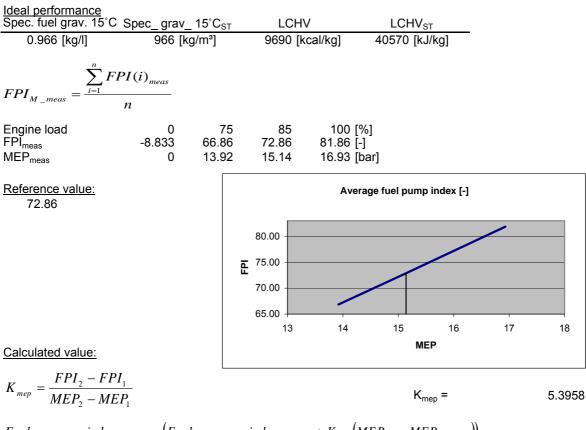

Calculated value:

Index function	on	
Value	Index	From reference
147.6	0	-15.0 %
165.0	80	-5.0 %
169.4	90	-2.5 %
173.7	100	0.0 %
182.4	100	5.0 %
186.7	90	7.5 %
191.1	80	10.0 %
225.8	0	30.0 %

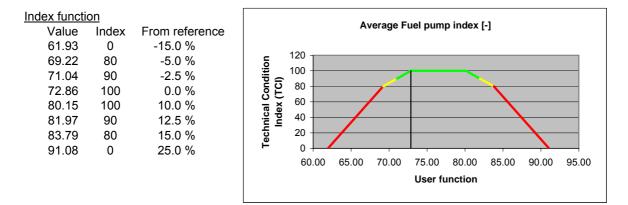
Ideal performance



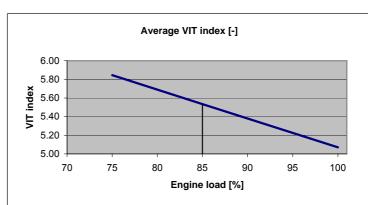
M7. TempdropExh inlet TC1


<u>ldeal performance</u> MEP(i) _{meas} =	MIP(i) _{meas} - 0	,94 [E	3ar]	ME	P(i)	$\frac{HP}{K}$	
Engine power Texh_T/C_inlet Texh_T/C_outlet ΔT T/C_exh (ΔTi) MEP _{meas}	75 350 231 119 13.92	85 365 233 132 15.14	100 [%] 386 [°C] 236 [°C] 150 [°C] 16.93 [bar]				
Reference value: 131.56				Exhaust ter	nperature drop	[°C]	
<u>Calculated reference</u> $K_{\Delta T_{-}T/C_{-}exh} = \frac{\Delta}{ME}$ $K_{\Delta T_{-}T/C_{-}exh} =$	_	Ech Tamp dear	160 150 140 130 120 110 100 13.50	14.50	15.50 MEP	, 16.50	17.50

 $\Delta T _ T / C _ exh_{corr} = \Delta T _ T / C _ exh_{meas} + K_{\Delta T _ T / C _ exh} (MEP_{ref} - MEP_{M _ meas})$

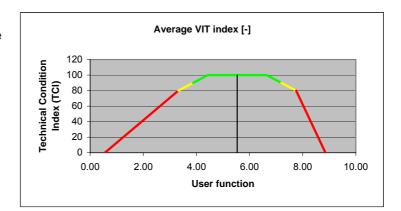

Index functi	on	
Value	Index	From reference
98.7	0	-25.0 %
111.8	80	-15.0 %
115.1	90	-12.5 %
118.4	100	-10.0 %
138.1	100	5.0 %
139.8	90	6.3 %
141.4	80	7.5 %
164.5	0	25.0 %

M8. IndexAverage FPs


 $Fuel _ pump _ index_{M_corr} = (Fuel _ pump _ index_{M_meas} + K_{mep} (MEP_{ref} - MEP_{M_meas})) \cdot \\ \left(\frac{Spec _ grav _ 15^{\circ}C_{meas}}{Spec _ grav _ 15^{\circ}C_{sT}} \cdot \frac{LCHV_{meas}}{LCHV_{sT}} \right)$

M9. VIT_Average FPs

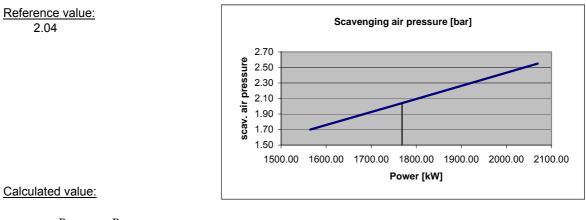
Ideal performance			
Engine load	75 5.85	85 5.54	100 [%] 5.07 [-]
VIT _{meas}	5.65	5.54	5.07 [-]


Reference value: 5.54

Calculated value:

$$VIT_{ind_{M}} = \frac{\sum_{i=1}^{n} VIT(i)_{ind_{M}}}{n}$$

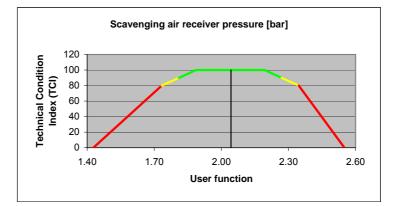
Index function Value From reference Index 0.55 -90.0 % 0 3.32 -40.0 % 80 3.87 -30.0 % 90 4.43 100 -20.0 % 6.64 100 20.0 % 7.20 30.0 % 90 7.75 80 40.0 % 8.86 60.0 % 0



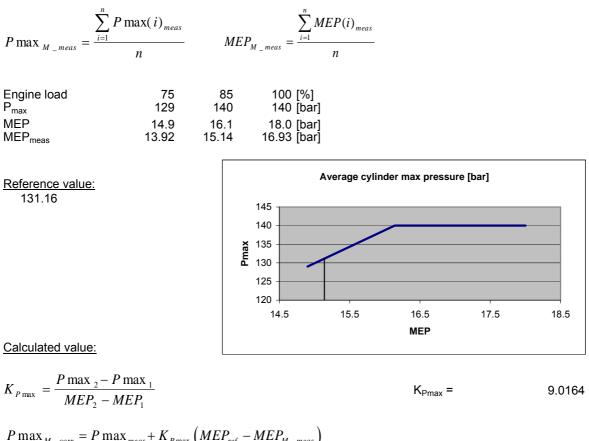
M10. Pscav Receiver

Ideal performance

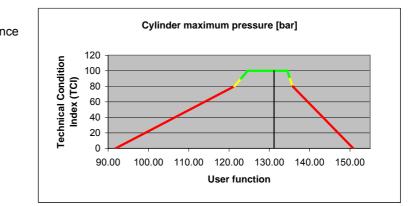
$$BHP_{M_meas} = \frac{\sum_{i=1}^{n} BHP(i)_{meas}}{n}$$


Engine load	75	85	100 [%]
Scav_air_press	1.70	2.04	2.55 [bar]
BHP	2097.66	2370.35	2773.94 [BHP]
Power	1564.85	1768.28	2069.36 [kW]

$$K_{Pscav} = \frac{Pscav_2 - Pscav_1}{Power_2 - Power_1}$$
 K_scav = 0.0017


$$Pscav_{corr} = Pscav_{meas} + K_{Pscav} \left(Power_{ref} - Power_{M_{meas}} \right) + \left(T_{Eng_{meas}} - 25 \right) \cdot 0,002856 \cdot Pscav_{meas} - 25 \cdot 0,002856 \cdot 0,00$$

Index function	on	
Value	Index	From reference
1.43	0	-30.0 %
1.73	80	-15.0 %
1.81	90	-11.3 %
1.89	100	-7.5 %
2.19	100	7.5 %
2.27	90	11.3 %
2.35	80	15.0 %
2.55	0	25.0 %


M11. PmaxAverage Cyl

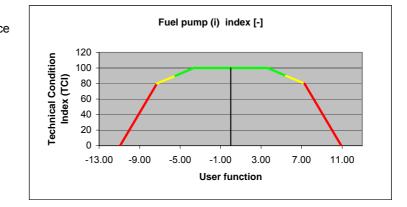
Ideal performance

$$\begin{aligned} \max_{M_corr} &= P \max_{meas} + K_{P\max} \left(MEP_{ref} - MEP_{M_meas} \right) \\ &+ (T_{eng_room} - 25) \cdot 2,198 \cdot 10^{-3} \cdot (1 + P \max_{meas}) \end{aligned}$$

Value	Index	From referer
91.81	0	-30.0 %
121.33	80	-7.5 %
122.97	90	-6.3 %
124.61	100	-5.0 %
134.44	100	2.5 %
135.10	90	3.0 %
135.75	80	3.5 %
150.84	0	15.0 %

M12. IndexDev FP1

Deviation from reference calculated on basis of fuel pump index absolute condition. Indicator referance: M8.


Reference value:

0.00

Calculated value:

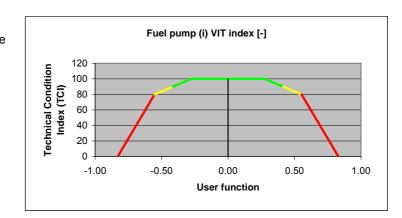
$$FPI_{M_meas} = \frac{\sum_{i=1}^{n} FPI(i)_{meas}}{n}$$
$$FPI(i)_{dev} = FPI(i)_{meas} - FPI_{M_meas}$$

Value	Index	From reference
-10.93	0	-15.0 %
-7.29	80	-10.0 %
-5.46	90	-7.5 %
-3.64	100	-5.0 %
3.64	100	5.0 %
5.46	90	7.5 %
7.29	80	10.0 %
10.93	0	15.0 %

M13. VIT_Average FPs

Deviation from reference calculated on basis of fuel pump average VIT index absolute condition. Indicator referance: M9.

Reference value:


0.00

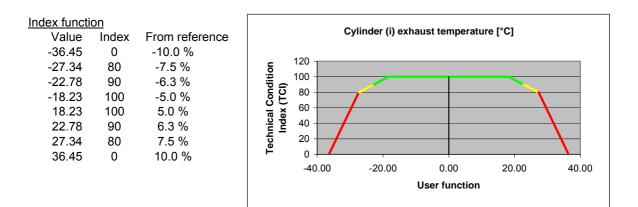
Calculated value:

$$VIT_{M_{meas}} = \frac{\sum_{i=1}^{n} VIT(i)_{ind_{meas}}}{n}$$

$$VIT(i)_{dev} = VIT(i)_{ind_meas} - VIT_{M_meas}$$

	011	
Value	Index	From reference
-0.83	0	-15.0 %
-0.55	80	-10.0 %
-0.42	90	-7.5 %
-0.28	100	-5.0 %
0.28	100	5.0 %
0.42	90	7.5 %
0.55	80	10.0 %
0.83	0	15.0 %

M14. TempExhDev Cyl1


Deviation from reference calculated on basis of exhaust inlet temperature absolute condition. Indicator reference: M6.

Reference value: 0.00

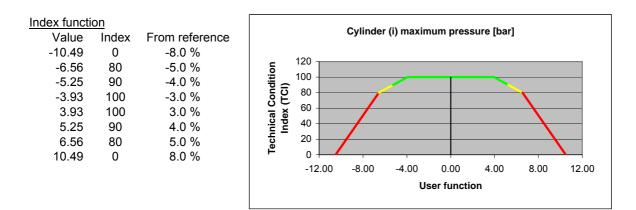
Calculated value:

$$Texh_T/C_{inlet_{M_meas}} = \frac{\sum_{i=1}^{n} Texh_T/C_{inlet}}{n}$$

 $Texh_T/C_{inlet_{dev}} = Texh_T/C_{inlet_{meas}} - Texh_T/C_{inlet_{M_{meas}}}$

M15. PmaxDev Cyl1

Deviation from reference calculated on basis of cylinder maximum pressure absolute condition. Indicator referance: M11.


Reference value:

0.00

Calculated value:

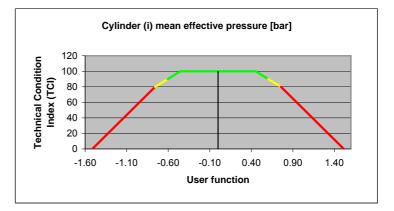
$$P\max_{M_{meas}} = \frac{\sum_{i=1}^{n} P\max(i)_{meas}}{n}$$

$$P \max_{dev} = P \max(i)_{meas} - P \max_{M} \max_{meas}$$

M16. MEP_Dev Cyl1

Deviation from reference calculated on basis of MEP_ref.

Reference value:


0.00

Calculated value:

$$MEP_{M_{meas}} = \frac{\sum_{i=1}^{n} MEP(i)_{meas}}{n}$$

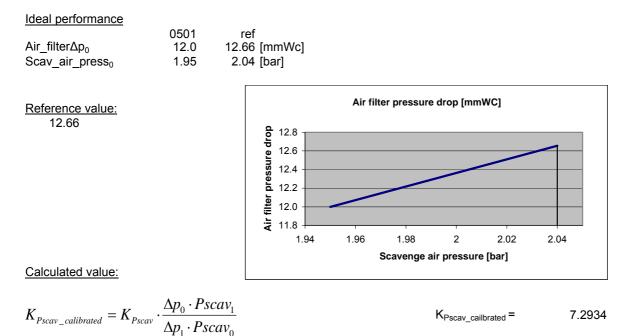
$$MEP_{dev} = MEP(i)_{meas} - MEP_{M_{meas}}$$

Value	Index	From reference
-1.51	0	-10.0 %
-0.76	80	-5.0 %
-0.61	90	-4.0 %
-0.45	100	-3.0 %
0.45	100	3.0 %
0.61	90	4.0 %
0.76	80	5.0 %
1.51	0	10.0 %

M17. Pdrop Filter TC1

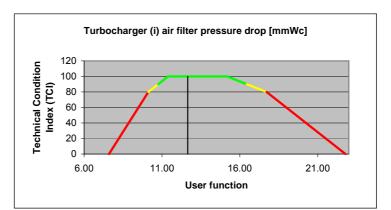
Scavenging air pressure from "Introduction for 46 - 98 MC type engines operation" Edition 40E page 196.

Model performance


	1	2
Scav_air_press _{meas}	2.00	3.00 [bar]
Air_filter∆p(i)	27.0	43.0 [mmWc]

Calculated model value:

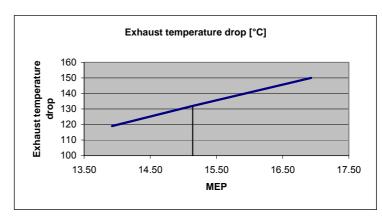
K_{scav_air_press} = 16.00


$$K_{scav_air_press} = \frac{\Delta p_2 - \Delta p_1}{Pscav_2 - Pscav_1}$$

Air filter pressure drop are not given in "Report of Sea Trial". Estimated from "Hual Asia Engine performance data sheet" from 0501 dated 2004-11-21, lowest value at T/C pressure drop. Scav_air_press₀ from "Hual Asia Engine Performance data sheet" from 0501.

$$\Delta p_{filter_corr} = \Delta p_{filter_meas} + K_{Pscav_calibrated} \left(Pscav_{ref} - Pscav_{meas} \right)$$

Value	Index	From reference
7.59	0	-40.0 %
10.13	80	-20.0 %
10.76	90	-15.0 %
11.39	100	-10.0 %
15.19	100	20.0 %
16.45	90	30.0 %
17.72	80	40.0 %
22.78	0	80.0 %

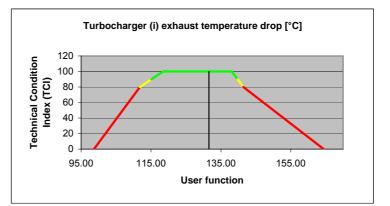

M18. TdropExh TC1

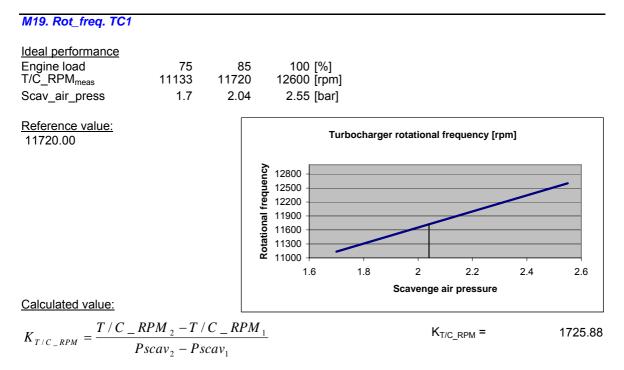
Ideal performance

Engine load	75	85	100 [%]	
Texh_T/C_inlet	350	365	386 [°C]	n
Texh_T/C_outlet	231	233	236 [°C]	$\sum MEP(i)_{meas}$
ΔT T/C_exh (ΔT _i)	119	132	150 [°C]	$MEP_{M_{-meas}} = \frac{i=1}{m_{meas}}$
MEP _{meas}	13.92	15.14	16.93 [bar]	m_meas n

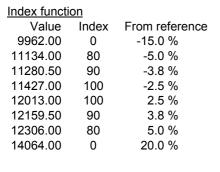
Reference value:

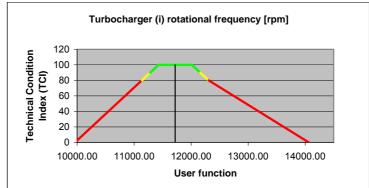
131.56

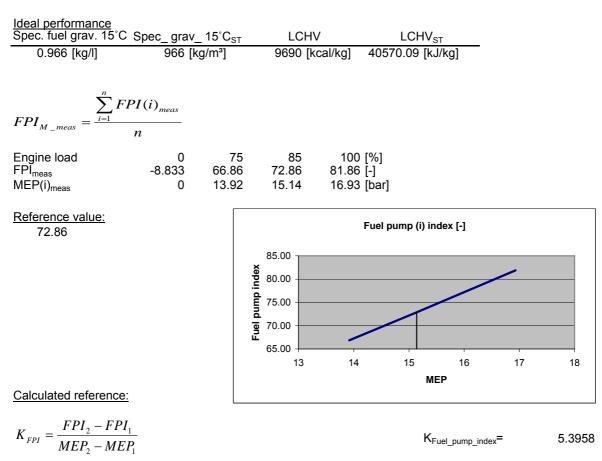

Calculated value:


$$K_{\Delta T_{-}T/C_{-}exh} = \frac{\Delta T_{2} - \Delta T_{1}}{MEP_{2} - MEP_{1}}$$

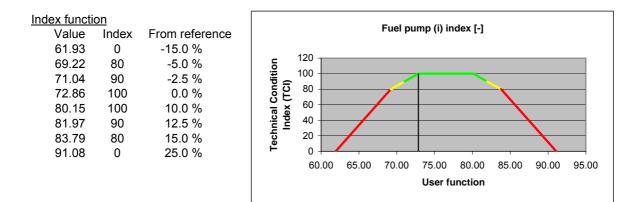
 $K_{\Delta T_{T/C}_{exh}} = 10.2990$


 $\Delta T _ T / C _ exh_{corr} = \Delta T _ T / C _ exh_{meas} + K_{\Delta T _ T / C _ exh} \left(MEP_{ref} - MEP_{M _ meas} \right)$

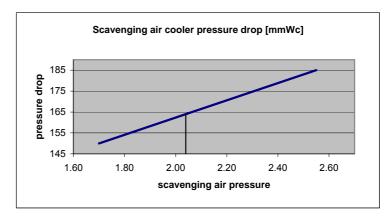

Value	Index	From reference
98.67	0	-25.0 %
111.83	80	-15.0 %
115.12	90	-12.5 %
118.41	100	-10.0 %
138.14	100	5.0 %
139.79	90	6.3 %
141.43	80	7.5 %
164.46	0	25.0 %



 $T / C _ RPM_{corr} = T / C _ RPM_{meas} + K_{T/C_RPM} (Pscav_{ref} - Pscav_{meas})$

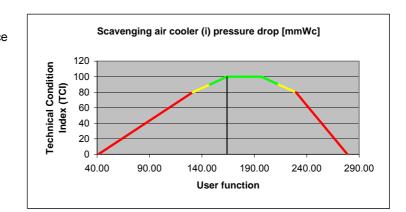


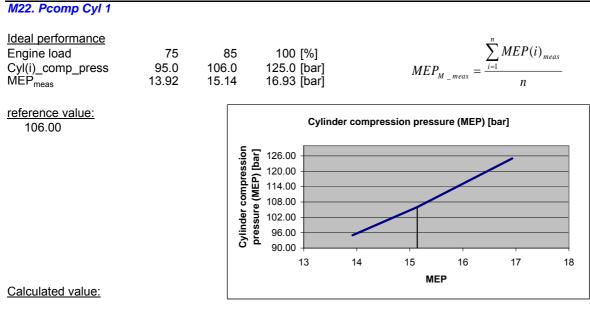
M20. Index FP1


$$FPI(i)_{corr} = \left(FPI(i)_{meas} + K_{FPI} \cdot \left(MEP_{ref} - MEP_{meas}\right)\right) \cdot \left(\frac{Spec_grav_15^{\circ}C_{meas} \cdot LCHV_{meas}}{Spec_grav_15^{\circ}C_{ST} \cdot LCHV_{ST}}\right)$$

M21. Pdrop ScavCool1

Ideal performance			
Engine load	75	85	100 [%]
Scav_cool∆p _{meas}	150	164	185 [mmWc]
Scav_air_press	1.70	2.04	2.55 [bar]

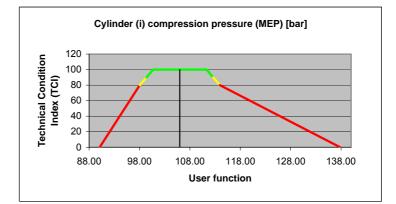

Reference value: 164.00

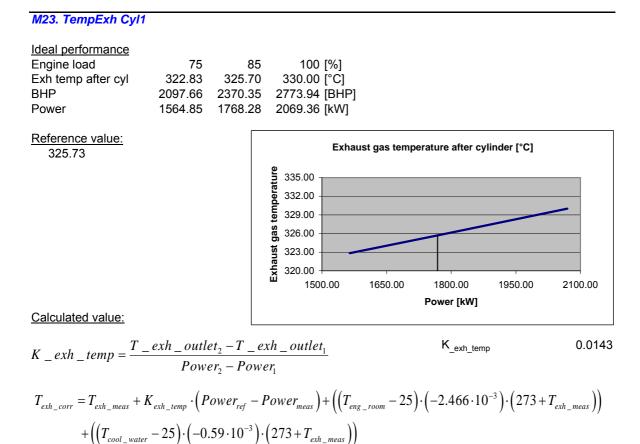


Calculatd value:

 $\Delta p_{cool_corr} = \Delta p_{cool_meas} + K_{\Delta pcool_calibrated} \left(Pscav_{ref} - Pscav_{meas} \right)$

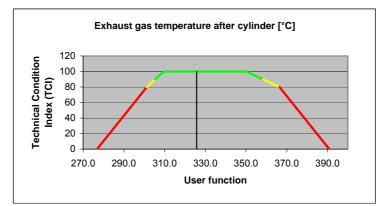
Index functi	on	
Value	Index	From reference
41.00	0	-75.0 %
131.20	80	-20.0 %
147.60	90	-10.0 %
164.00	100	0.0 %
196.80	100	20.0 %
213.20	90	30.0 %
229.60	80	40.0 %
278.80	0	70.0 %




 $K_{Pcomp} = \frac{Pcomp_2 - Pcomp_1}{MEP_2 - MEP_1}$

9.9668 $K_{cyl_comp_press_(MEP)}$

$$Pcomp(i)_{corr} = Pcomp(i)_{meas} + K_{Pcomp} \cdot \left(MEP_{ref} - MEP_{M_{meas}}\right) + \left(T_{eng_{room}} - 25\right) \cdot 2.954 \cdot 10^{-3} \cdot \left(1 + Pcomp(i)_{meas}\right)$$


Value	Index	From reference
90.10	0	-15.0 %
98.05	80	-7.5 %
99.38	90	-6.3 %
100.70	100	-5.0 %
111.30	100	5.0 %
112.63	90	6.3 %
113.95	80	7.5 %
137.80	0	30.0 %

	e
Index	function

Value	Index	From reference
276.9	0	-15.0 %
301.3	80	-7.5 %
305.4	90	-6.3 %
309.4	100	-5.0 %
350.2	100	7.5 %
358.3	90	10.0 %
366.5	80	12.5 %
390.9	0	20.0 %

Index-tree Specific fuel oil consumption (SFOC) Exhaust inlet temperature Exhaust inlet temperature Exhaust inlet temperature Exhaust temperature drop Exhaust temperature drop Exhaust temperature drop Exhaust temperature drop Average VIT index Average VIT index Average VIT index Average VIT index Average Fuel pump index Average Fuel pump index Average Fuel pump index Average Fuel pump index Scavenging air pressure Scavenging air pressure Scavenging air pressure Scavenging air pressure Average Cylinder max pressure Average Cylinder max pressure Average Cylinder max pressure VIT index balance VIT index balance VIT index balance Fuel pump index balance Fuel pump index balance Fuel pump index balance Exhaust temperature balance Exhaust temperature balance Cylinder max pressure balance Cylinder max pressure balance Cylinder max pressure balance Mean effective pressure balance Mean effective pressure balance Mean effective pressure balance Air filter pressure drop Air filter pressure drop Air filter pressure drop Exhaust temperature drop Exhaust temperature drop Exhaust temperature drop Exhaust temperature drop Rotational frequency Rotational frequency Rotational frequency Rotational frequency

2006-03-21 Index tree changed 2006-01-03 Operational reference load changed to 80 % for easy comparence to other ships. 2006-01-18 Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-02-23 Acceptable limits for lowest value changed to include possible variations 2006-03-21 Layout changed 2006-01-18 New indicator added to the specification. 2006-02-23 Acceptable limits for lowest value changed to include possible variations 2006-03-21 Layout changed 2006-01-03 Operational reference load changed to 80 %. Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-01-18 2006-02-23 Acceptable limits for lowest value changed to include possible variations 2006-03-21 Layout changed 2006-01-03 Operational reference load changed. Limits set by percentage deviation changed. Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-01-18 2006-02-23 Acceptable limits for lowest value changed to include possible variations 2006-03-21 Layout changed 2006-01-03 Operational reference load changed to 80 %. 2006-01-18 Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-02-23 Acceptable limits for lowest value changed to include possible variations 2006-03-21 Layout changed Operational reference load changed to 80 %. 2006-01-03 Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-01-18 2006-02-23 Acceptable limits for lowest value changed to include possible variations 2006-03-21 Layout changed 2006-01-03 Operational reference load changed. Limits set by percentage deviation changed. 2006-01-18 Operational reference load changed to 85 %, Limits set by absolute deviation removed. Layout changed 2006-03-21 2006-01-03 Limits changed. Now set by percentage deviation of reference load. 2006-01-18 Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-03-21 Layout changed 2006-01-03 Limits changed. Now set by percentage deviation of reference load. 2006-01-18 Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-03-21 Layout changed 2006-01-18 Limits changed. Now set by percentage deviation of reference load. Layout changed 2006-03-21 2006-01-03 Limits changed. Now set by percentage deviation of reference load. 2006-01-18 Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-03-21 Layout changed 2006-01-03 Limits changed. Now set by percentage deviation of reference load. 2006-01-18 Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-03-21 Lavout changed 2006-01-03 Operational reference load changed. Limits set by percentage deviation changed. 2006-01-18 Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-03-21 Layout changed 2006-01-03 Operational reference load changed to 80 %. 2006-01-18 Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-02-23 Acceptable limits for lowest value changed to include possible variations 2006-03-21 Lavout changed 2006-01-03 Operational reference load changed. Measured values changed. 2006-01-18 Operational reference load changed to 85 %, Limits set by absolute deviation removed. Acceptable limits for lowest value changed to include possible variations 2006-02-23

- 2006-03-21 Lavout changed

Air filter pressure drop relative condition Air filter pressure drop relative condition Air filter pressure drop relative condition Exhaust inlet temperature relative condition Exhaust inlet temperature relative condition Exhaust inlet temperature relative condition Rotational frequency relative codition Rotational frequency relative codition Rotational frequency relative codition Rotational frequency relative codition Fuel pump index deviation Fuel pump index deviation Fuel pump index deviation Fuel pump index Fuel nump index Scavenging air cooler (i) pressure drop Scav air cooler pressure drop relative condition Scav air cooler pressure drop relative condition Scav air cooler pressure drop relative condition Compression pressure (MEP) Compression pressure (MEP) Compression pressure (MEP) Compression pressure (MEP) Compression pressure (Scav) Compression pressure (Scav) Compression pressure (Scav) Compression pressure (Scav) Compression pressure deviation Compression pressure deviation Compression pressure deviation Compression pressure deviation Exhaust outlet temperature Exhaust outlet temperature Exhaust outlet temperature

2006-01-03 Limits changed. Now set by percentage deviation of reference load. 2006-01-18 Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-03-21 Indicator removed from specification 2006-01-18 Limits changed. Now set by percentage deviation of reference load. 2006-01-18 Limits changed. Now set by percentage deviation of reference load. 2006-03-21 Indicator removed from specification 2006-01-03 Limits changed. Now set by percentage deviation of reference load. 2006-01-18 Operational reference load changed to 85 %, Limits set by absolute deviation removed. Acceptable limits for lowest value changed to include possible variations 2006-02-23 2006-03-21 Indicator removed from specification 2006-01-03 Limits changed. Now set by percentage deviation of reference load. Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-01-18 2006-02-23 Acceptable limits for lowest value changed to include possible variations 2006-02-23 FPI changed from deviation to absolute value 2006-03-21 Layout changed 2006-01-03 Operational reference load changed to 80 %. 2006-01-18 Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-02-23 Acceptable limits for lowest value changed to include possible variations 2006-03-21 Layout changed 2006-01-03 Limits changed. Now set by percentage deviation of reference load. Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-01-18 2006-03-21 Indicator removed from specification Operational reference load changed. Limits set by percentage deviation changed. 2006-01-03 Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-01-18 2006-02-23 Acceptable limits for lowest value changed to include possible variations 2006-03-21 Lavout changed 2006-01-03 Operational reference load changed. Limits set by percentage deviation changed. 2006-01-18 Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-02-23 Acceptable limits for lowest value changed to include possible variations 2006-03-21 Indicator removed from specification 2006-01-03 Limits changed. Now set by percentage deviation of reference load. 2006-01-18 Operational reference load changed to 85 %, Limits set by absolute deviation removed. 2006-02-23 Acceptable limits for lowest value changed to include possible variations 2006-03-21 Indicator removed from specification 2006-01-18 New indicator added to the specification. 2006-02-23 Acceptable limits for lowest value changed to include possible variations 2006-03-21 Layout changed

Variable in u.f.	TOCC tag name	Höegh tag name
SFOC	L.Hoegh_Asia_Engine specific fuel oil consumption	
FOC _{meas}	L.Hoegh_Asia_Engine fuel oil consumption	FO_KG_HR
SHP[kW] _{meas}	L.Hoegh_Asia_Shaft torsion meter power indicator	SHP
LCHV _{meas}	L.Hoegh_Asia_Engine fuel heat value	FO_HEAT_VAL
T_eng_room _{meas}	L.Hoegh_Asia_Ship engine room temperature	AIR_TEMP_ENG_R
T_scav _{meas}	L.Hoegh_Asia_Scavenging air receiver 1 temperature	REC_TEMP
Texh_T/C_inlet _{meas}	L.Hoegh_Asia_Turbocharger 1 exhaust gas inlet temperature	EXH_TEMP1
Texh_T/C_inlet _{meas}	L.Hoegh_Asia_Turbocharger 2 exhaust gas inlet temperature	EXH_TEMP2
Texh_T/C_outlet _{meas}	L.Hoegh_Asia_Turbocharger 1 exhaust gas outlet temperature	OUTLET1
Texh_T/C_outlet _{meas}	L.Hoegh_Asia_Turbocharger 2 exhaust gas outlet temperature	OUTLET2
MIP(i) _{meas}	L.Hoegh_Asia_Cylinder 1 mean indicated pressure	CYLINDER_PMI1
MIP(i) _{meas}	L.Hoegh_Asia_Cylinder 2 mean indicated pressure	CYLINDER_PMI2
MIP(i) _{meas}	L.Hoegh_Asia_Cylinder 3 mean indicated pressure	CYLINDER_PMI3
MIP(i) _{meas}	L.Hoegh_Asia_Cylinder 4 mean indicated pressure	CYLINDER_PMI4
MIP(i) _{meas}	L.Hoegh_Asia_Cylinder 5 mean indicated pressure	CYLINDER_PMI5
MIP(i) _{meas}	L.Hoegh_Asia_Cylinder 6 mean indicated pressure	CYLINDER_PMI6
MIP(i) _{meas}	L.Hoegh_Asia_Cylinder 7 mean indicated pressure	CYLINDER_PMI7
VIT(i) _{ind_meas}	L.Hoegh_Asia_Cylinder 1 fuel pump VIT index	CYLINDER_VIT1
VIT(i) _{ind_meas}	L.Hoegh_Asia_Cylinder 2 fuel pump VIT index	CYLINDER_VIT2
VIT(i) _{ind_meas}	L.Hoegh_Asia_Cylinder 3 fuel pump VIT index	CYLINDER_VIT3
VIT(i) _{ind_meas}	L.Hoegh_Asia_Cylinder 4 fuel pump VIT index L.Hoegh Asia Cylinder 5 fuel pump VIT index	CYLINDER_VIT4 CYLINDER VIT5
VIT(i) _{ind_meas} VIT(i) _{ind_meas}	L.Hoegh_Asia_Cylinder 6 fuel pump VIT index	CYLINDER_VIT6
VIT(I) _{ind_meas}	L.Hoegh_Asia_Cylinder o fuel pump VIT index	CYLINDER_VIT7
Fuel_pump_index(i) _{meas}	L.Hoegh_Asia_Cylinder 1 fuel pump index	CYLINDER_FUEL1
Fuel_pump_index(i) _{meas}	L.Hoegh_Asia_Cylinder 1 fuel pump index	CYLINDER_FUEL2
Fuel_pump_index(i) _{meas}	L.Hoegh_Asia_Cylinder 3 fuel pump index	CYLINDER_FUEL3
Fuel_pump_index(i) _{meas}	L.Hoegh_Asia_Cylinder 4 fuel pump index	CYLINDER_FUEL4
Fuel_pump_index(i) _{meas}	L.Hoegh_Asia_Cylinder 5 fuel pump index	CYLINDER FUEL5
Fuel_pump_index(i) _{meas}	L.Hoegh_Asia_Cylinder 6 fuel pump index	CYLINDER_FUEL6
Fuel_pump_index(i) _{meas}	L.Hoegh_Asia_Cylinder 7 fuel pump index	CYLINDER_FUEL7
Spec_grav_15°C _{meas}	L.Hoegh_Asia_Engine fuel specific gravity at 15oC	FUEL_DENSITY
Scav_air_press _{meas}	L.Hoegh_Asia_Scavenging air receiver 1 pressure	REC_PRESS_BAR
Pmax(i)_meas	L.Hoegh_Asia_Cylinder 1 maximum pressure	CYLINDER_PMAX1
Pmax(i)_meas	L.Hoegh_Asia_Cylinder 2 maximum pressure	CYLINDER_PMAX2
Pmax(i)_meas	L.Hoegh_Asia_Cylinder 3 maximum pressure	CYLINDER_PMAX3
Pmax(i)_meas	L.Hoegh_Asia_Cylinder 4 maximum pressure	CYLINDER_PMAX4
Pmax(i)_meas	L.Hoegh_Asia_Cylinder 5 maximum pressure	CYLINDER_PMAX5
Pmax(i)_meas	L.Hoegh_Asia_Cylinder 6 maximum pressure	CYLINDER_PMAX6
Pmax(i)_meas	L.Hoegh_Asia_Cylinder 7 maximum pressure	CYLINDER_PMAX7
Air_filter∆p _{meas}	L.Hoegh_Asia_Turbocharger 1 air filter pressure drop	TC_DP1
Air_filter∆p _{meas}	L.Hoegh_Asia_Turbocharger 2 air filter pressure drop	TC_DP2
T/C_RPM _{meas}	L.Hoegh_Asia_Turbocharger 1 rotational frequency	TC1
T/C_RPM _{meas}	L.Hoegh_Asia_Turbocharger 2 rotational frequency	TC2
Scav_coo∆p _{meas}	L.Hoegh_Asia_Scavenging air cooler 1 air pressure drop	COOLER_DP1
Scav_coo∆p _{meas}	L.Hoegh_Asia_Scavenging air cooler 2 air pressure drop	COOLER_DP2
Cyl(i)_comp_press	L.Hoegh_Asia_Cylinder 1 compression pressure	CYLINDER_PCOMP1
Cyl(i)_comp_press _{meas}	L.Hoegh_Asia_Cylinder 2 compression pressure	CYLINDER_PCOMP2
Cyl(i)_comp_press _{meas} Cyl(i)_comp_press _{meas}	L.Hoegh_Asia_Cylinder 3 compression pressure L.Hoegh_Asia_Cylinder 4 compression pressure	CYLINDER_PCOMP3 CYLINDER_PCOMP4
Cyl(i)_comp_press _{meas}	L.Hoegh_Asia_Cylinder 5 compression pressure	CYLINDER_PCOMP4 CYLINDER_PCOMP5
Cyl(i)_comp_press _{meas}	L.Hoegh_Asia_Cylinder 6 compression pressure	CYLINDER_PCOMP5
Cyl(i)_comp_press _{meas}	L.Hoegh_Asia_Cylinder 7 compression pressure	CYLINDER_PCOMP7
- J.(.)_oonp_procomeas	Encogn_noia_oymach r compression pressure	

Höegh tag name

ARKTRANS System Framework Architecture for Multimodal Freight and Passenger Transport

Hans Westerheim

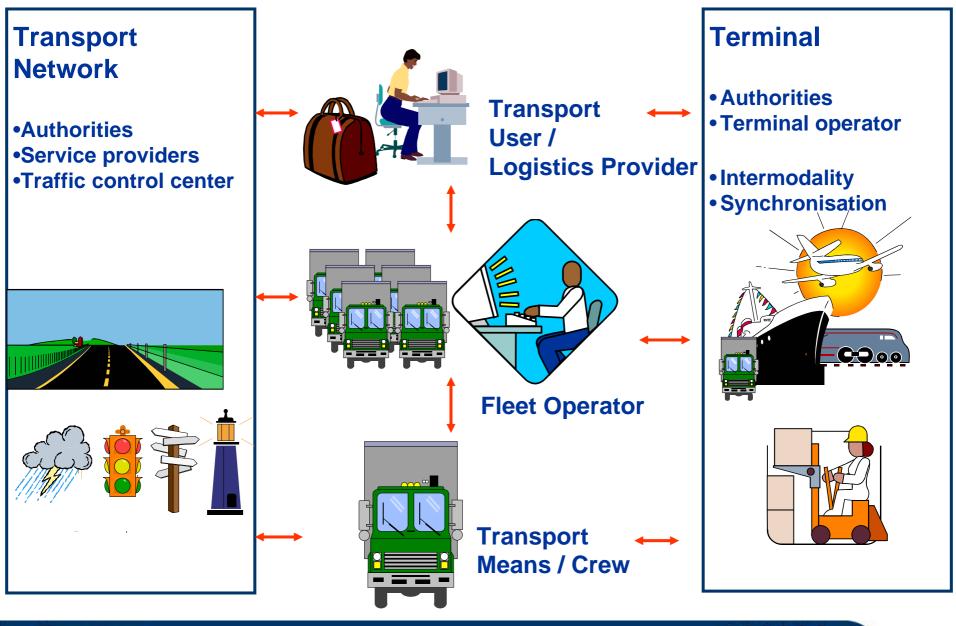
hans.westerheim@sintef.no

Information and Communication Technology

ARKTRANS Background

Need for harmonisation

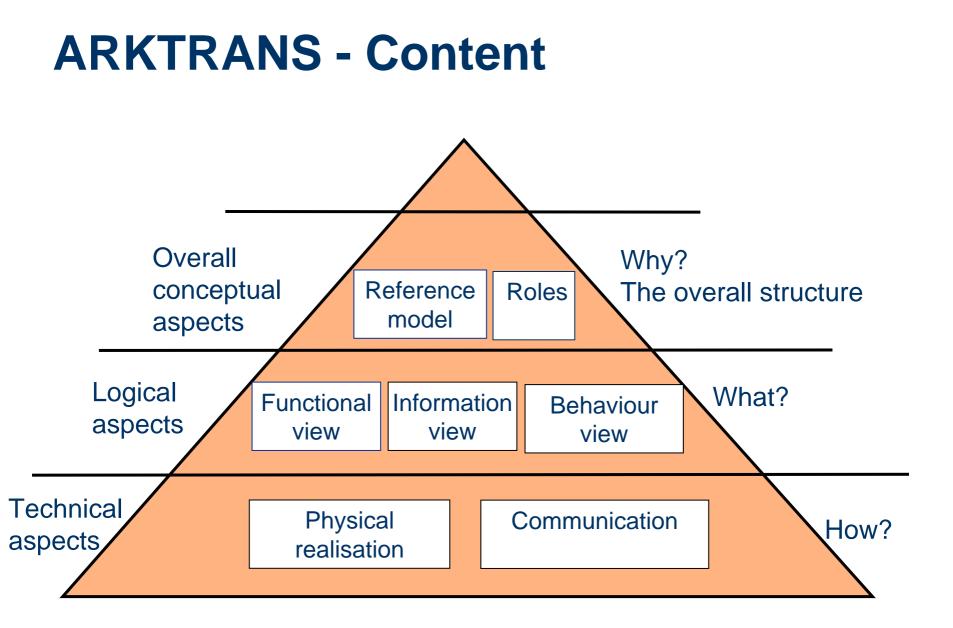
SINTEF


- Between transport modes (road, railway, sea, air)
- Between freight and passenger transport
- The same information is requested by authorities, service users, service providers, transport users, etc.
 - Information is registered manually many times
 - Faulty and insufficient information, e.g for dangerous cargo
 - Multimodal transport chains are not managed properly
 - Lack of status information, estimated time of arrival, etc.
- Lack of information, or available information is not utilised when transport is planned and carried out.
 - Dynamic information (e.g. traffic conditions, meteorological conditions)
 - Route and traffic information across transport modes
 - Available capacity across transport modes

The ARKTRANS project

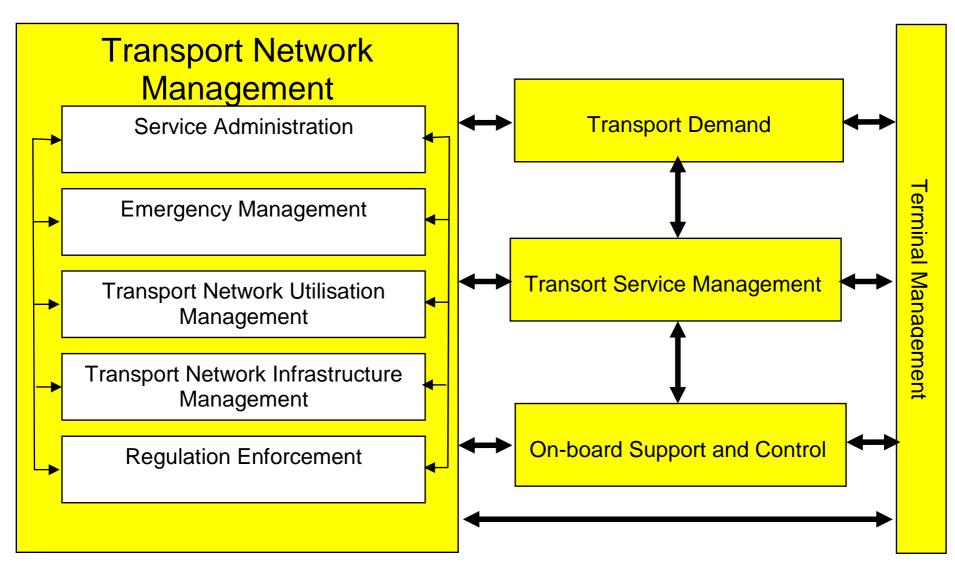
- Phase1: September 2000 September 2001
- Phase 2 →: January 2002 December 2004
- Participants
 - The Norwegian Public Road Administration (contractor)
 - The Norwegian Coast Administration
 - The Norwegian Civil Aviation Administration
 - The Norwegian National Rail Administration
 - The Norwegian State Railways
 - Telenor R&D
 - Ergo Solution
 - Transportbedriftenes Landsforening (TL) Federation of Norwegian Transport Companies
 - The SINTEF Group (technical manager/project leader)
- User reference groups
- ARKTRANS is now managed by ITS Norway

The Transport Domain



ARKTRANS What we want to achieve

Establish a common view on the transport domain

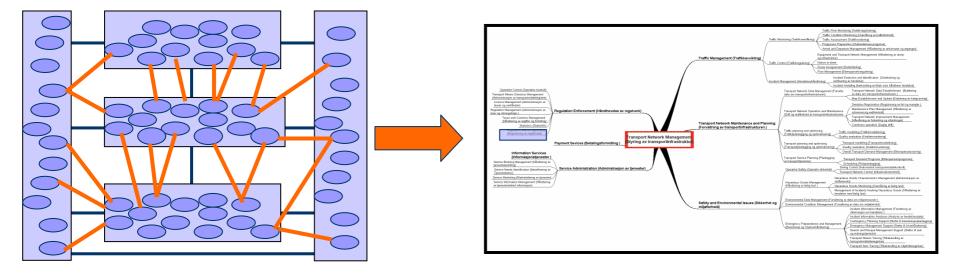

- Transport domain organisation and structure
- Multimodal terminology for roles (representing the actors involved)
- Multimodal terminology for services and functionality
- Specifications of roles, services and functionality
- Interoperable ICT solutions
 - Defined functionality
 - Can interact with other actors and other systems
 - "Standardised" information exchange
- Better basis for specification of ICT solutions
 - ARKTRANS shall be a template
 - Requirements and solutions can be based on ARKTRANS
 - Solutions can be evaluated towards ARKTRANS

The ARKTRANS Reference Model

Roles – Some examples

Multimodal terms		Modal terms			
Superior roles	Detailed roles	Road	Sea	Rail	Air
Transport Network	Transport Corridor	Road	Fairway	Railroad	Corridor
Transport Means		Car, buss, etc.	Vessel, bark, etc.	Train	Aircraft, helicopter
Terminal		Stop, station	Terminal	Station	Airport
Crew	Captain	Driver	Captain	Engine driver	Captain
	Driver	Driver	Helmsman	Engine driver	Pilot
Transport	Traveller				
Item	Cargo				

Referring to stakeholders and systems that may interact with ITS


Common *multimodal* terminology – simplifies the architecture specification

Mapping between multimodal and modal terms

SINTEF

Information and Communication Technology

Functional view: Decomposition, scenarios, interactions

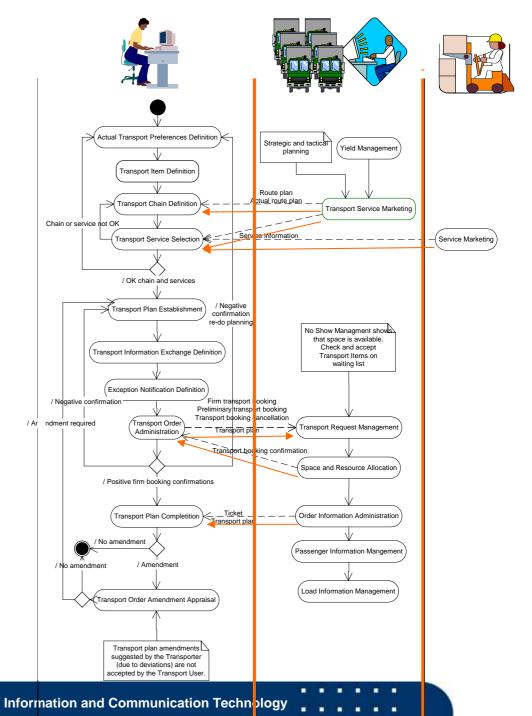
- Functional decomposition of the reference model sub-domains
- Scenarios showing how the functionality can be used
 - Based on needs of different roles
 - Verifies the functionality
 - Identifies required interactions interoperability

Behavior view - Scenarios

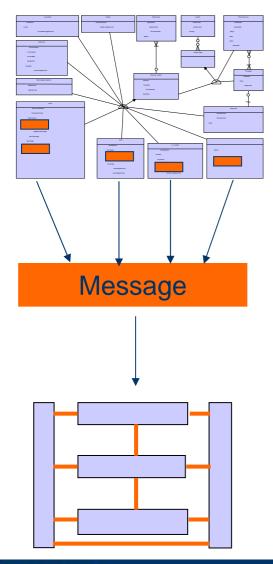
- Terminal Scenarier
 - Strategic and Tactical Planning
 - Operational Planning
 - Operational Inbound Planning
 - Operational Transhipment Planning
 - Operational Outbound Planning
 - Terminal Operation Management
 - Terminal Operation Monitoring
 - Inbound Control
 - Transhipment and Storage
 - Outbound Control
 - Incident and Deviation Management
- Transport Network Management Scenarier
 - TIC/TCC/Traffic and transport planner
 - Strategic and Tactical Planning
 - Transport Operation Planning
 - Traffic Monitoring
 - Traffic Control
 - Incident Handling
 - Service provider
 - Travel Information Provider
 -
 - Transport Network Manager
 - Strategic and Tactical Planning
 - ·····

- Transport User Scenarier
 - Transport Preparation
 - Chain Management
- Transporter/Fleet Manager Scenarios
 - Strategic and Tactical Planning
 - Operational Planning
 - Transport Operation Management
 - Start-up and administration
 - Transport Operation Monitoring
 - Schedule Management
 - Deviation Management
 - Incident Management
 - Exceptional Transport Need Management
- On-board Scenarier
 - Driving support
 - Navigation support
 - Automated operations
 - Transport operation

The scenarios are important for the identification and harmonisation of the information flow


Information and Communication Technology

Scenarios


- UML swim lanes
- Show the use of functionality
- Verify functionality

Identify interactions

() SINTEF

Information focus: Information models and messages

- Conceptual information models defines common information
- Messages are composed by means of information elements from the information models
- Message specifications are generated from the models
- Interactions are message exchange sequences

The use of **ARKTRANS**

- ARKTRANS has been used in several research and development projects as an architectural basis
 - MarNIS
 - MultiRIT
 - VIKING Ferry Data Pool

ARKTRANS may be used to set the context for the information flow realised by e.g. XML

www.arktrans.no

