Indonesia's experience: The application of biodiesel in the transportation sector

Rizqon Fajar BTMP BPP Teknologi Indonesia Tokyo, July 22nd 2015

1

CONTENTS

- I. INTRODUCTION
- II. BIODIESEL POLICIES
- III. BIODIESEL IMPLEMENTATIONS
- IV. CHALLENGES OF BIODIESEL
- V. RESEARCH AND DEVELOPMENT
- VI. BIODIESEL TESTING RESULTS

I. INTRODUCTION

3

Why Biofuel in Indonesia?

- BIOFUEL provides energy security and prevent global warming
- BIOFUEL reduces greenhouse gas emission in transportation sector
- ❖BIOFUEL promotes industrial development, innovation and jobs creation
- Indonesia has various BIOFUEL feedstocks and land plantation
- Proven BIOFUEL technology by domestic potential (Engineering, Research and Development)

Indonesia Energy Diversity Planning

Energy Elasticity < 1

- National energy mix target in 2025
- Presidential decree No. 5 / 2006

Energy Elasticity < 1.65

- National energy mix in 2013
- Average of increasing energy consumption: 7%/year

5

Utilization Achievement of Biodiesel

- The content of biodiesel/fame (now 10%, B-10) will be increase to 20% (B-20) in 2016
- Mandatory biofuel realization is around 1,69 billion kL in 2014 or increase of 62% compared to 2013

Resources of Biofuel

- 46 type of plantations has been identified as potential resources in Indonesia .
- Considering cultivation area, production process and plant properties, the best 4 of plants are as follow:

Comparison of	Biodiesel Raw Materia			
Raw Material	Production Area -ha	Productivity	Production	Ease of
Raw Material	(Prediction 2013)	(kg/ha)	Availability*)	Production*)
Palm	9.149.919	3.689	30 years	seed and pulp
Coconut	3.796.149	1.157	50 years	pulp
Jathropa	47.407	302	50 years	seed
Rubber	3.492.042	1.104	20 years	seed

Source: Statistik Perkebunan Indonesia 2009-2012, Ditjen Perkebunan, Kementan *): Priyohadi Kuncahyo,2013

- Indonesia is the biggest producer of palm oil in the world
- Palm is still the most potential as resource for biofuel !!!

7

Fatty Acids Composition

Composition	Palm	Coconut	Jatropha	Rubber
Kaproat Acid (6:0)	-	0 - 0.8	-	-
Kaprilat Acid (8:0)	-	5.5 - 9.5	-	-
Kaprat Acid (10:0)	-	4.5 - 9.5	-	-
Laurat Acid (12:0)	0 - 0.4	44 - 50	-	-
Miristat Acid (14:0)	0.6 - 1.7	13 - 19	-	-
Palmitat Acid (16:0)	41.1 - 47.0	7.5 - 10.5	14 - 15	7 - 8
Stearat Acid (18:0)	3.7 - 5.6	1 - 3	7	9 - 10
Arakhidat Acid (20:0)	-	0 - 0.45	-	0.5
Palmitoleat Acid (16:1)	-	0 - 1.3	1	-
Oleat Acid (18.1)	38.2 - 43.6	5 - 8	34 - 45	28 - 30
Linoleat Acid (18:2)	6.6 - 11.9	1.5 - 2.5	31 - 43	33 - 35
Linolenat Acid (18:3)	0 - 0.6	-	0.2	20 - 21

[✓] Palm oil is dominated by palmitat acid : high cetane number

[✓] Palam oil has lower linolet acid content (good oxidation stability)

II. BIODIESEL POLICIES

9

10

BIOFUEL POLICIES

Priority for providing and utilizing non fossil fuel (new **CONSTITUTION NO. 30, 2007** and renewable energy/EBT) including biofuel Biofuel target on 2015 is 5% for national energy mix **PERPRES NO. 79, 2014** Instruction to related ministry, governor and municipal **INPRES NO. 1, 2006** head to make an action to accelerate providing and utilization of biofuel Mandatory for utilization of biofuel on sectors of **PERMEN ESDM NO. 32, 2008** transportation, industry, commercial and electric power generation Acceleration of biofuel mandatory from decree of PERMEN ESDM No. 25/2013 dan NO. 20/2014 ministry No 32 year 2008 Market price index of biofuel when its blended into KEPMEN ESDM NO.2185K/12/MEM/2014 certain fossil fuel/subsidized fuel 1. No.723 K/10/DJE/2013: Biodiesel refer to SNI

7182:2012

7390:2012

transesterification

2. No.722K/10/DJE/2013: Bioethanol refer to SNI

4. No.830K/10/DJE/2013: Bio oil with partial

No.903K/10/DJE/2013: CPO refer to SNI 7431:2008

Source: ESDM Presentation 2015

PERDIRJEN EBTKE

Mandatory of Biofuel

BIODIESEL (Minimum)

Sector	July 2014	Jan. 2015	Jan. 2016	Jan. 2020	Jan. 2025		
Transportation, Public Service Obligation (PSO)	10%	10%	20%	30%	30%		
Transportation Non PSO	10%	10%	20%	30%	30%		
Industry	10%	10%	20%	30%	30%		
Electricity	20%	25%	30%	30%	30%		

BIOETANOL (Minimum)

Sector	July 2014	Jan. 2015	Jan. 2016	Jan. 2020	Jan. 2025
Transportation, Public Service Obligation (PSO)	0,5%	1%	2%	5%	20%
Transportation Non PSO	1%	2%	5%	10%	20%
Industry	1%	2%	5%	10%	20%
Electricity	-	-	-	-	-

CPO (Minimum)

Sector	July 2014	Jan. 2015	Jan. 2016	Jan. 2020	Jan. 2025
Low and Medium Speed Engine in Industry	5%	10%	20%	20%	20%
Low and Medium Speed Engine in Marine Transportation	5%	10%	20%	20%	20%
Air Transportation	-	-	2%	3%	5%
Electricity	6%	15%	20%	20%	20%

Current priority of biofuel application is on land transportation Government plan to do field testing on marine applications in 2016

11

Biodiesel standard

Specification of B100 (SNI 7182:2012)

No	Parameter	Value	Unit	Method
1	Density at 40 °C	850-890	kg/m³	ASTM D-1298/D-4052/SNI 7182:2012
2	Kinematic Viscosity at 40 ° C	2.3-6.0	mm²/s	ASTM D-445//SNI 7182:2012
3	Cetana Number	51	Min	ASTM D-613/D-6890//SNI 7182:2012
4	Flash Point	100	° C, Min	ASTM D-93//SNI 7182:2012
5	Cloud Point	18	° C, Max	ASTM D-2500//SNI 7182:2012
6	Copper Strip Corrossion (3 hours at 50 °C)	1	-	ASTM D-130//SNI 7182:2012
7	Carbon Residue			
	In Original Sample	0.05	% of mass, Max	ASTM D-4530/D-189//SNI 7182:2012
	In 10% of Distillation Waste	0.3	% Of Illass, Iviax	ASTNI D-4530/D-189//SNI /182.2012
8	Water and Sediment	0.05	% of vol, Max	ASTM D-2709//SNI 7182:2012
9	Distillation Temperature 90%	360	° C, Max	ASTM D-1160//SNI 7182:2012
10	Sulfuric Ash	0.02	% of mass, Max	ASTM D-874//SNI 7182:2012
11	Sulfur	100	mg/kg, Max	ASTM D-5453/D-1266/D-4294/D-2622/SNI 7182:2012
12	Phosphorus	10	mg/kg, Max	AOCS Ca 12-55//SNI 7182:2012
13	Acid Number	0,6	mg KOH/g, Max	AOCS Cd 3d-63/ASTM D-664/SNI 7182:2012
14	Free Glycerol	0,02	% of mass, Max	AOCS Ca 14-56/ASTM D-6584/SNI 7182:2012
15	Total Glycerol	0,24	% of mass, Max	AOCS Ca 14-56/ASTM D-6584/SNI 7182:2012
16	Ester Methyl Level	96,5	% of mass, Min	SNI 7182:2012
17	Iodium Number	115	% of mass (g-I2/100g), Max	AOCS Cd 1-25//SNI 7182:2012
18	Oxidation Stability			
	Induction Method Period	360	Nainute Nain	EN 15751/SNI 7182:2012
	Rancimat or Petro Oxy Method	27	Minute, Min	ASTM D-7545/SNI 7182:2012

Biodiesel standard

Specification of B6 - B20 (ASTM D7467-10)

No	Parameter	ASTM Method	Restriction	Unit
1	Acid Number	D-664	Max 0.30	mg KOH/g, Max
2	Kinematic Viscosity at 40 °C	D-445	1.9-4.1	mm²/s
3	Flash Point	D-93	Min 52	°C
4	Cloud Point	D-2500		°C
5	Sulfur			
	S15 Grade	D-5453	Max 0.0015 (15)	% of mass, ppm
	S500 Grade	D-5453	Max 0.05 (500)	% of mass, ppm
6	Physical Distillation T90	D-86	Max 650	°C
7	Ramsbottom Carbon Residue - 10% Residue	D-524	Max 0.35	% of mass
8	Cetana Number	D-613	Min 40	Min
9	Requirements			
	Cetana Index	D-976-80	Min 40	-
	Aromatic Compound	D-1319-03	Max 35	% of volume
10	Ash Content	D-482	Max 0.01	% of mass
11	Water and Sediment	D-2709	Max 0.05	% of volume
12	Copper Strip Corrossion	D-130	Max No. 1	
13	Phosphorus Content	D-4951	Max 0.001	% of mass
14	Oxydation Stability	EN-14112	Min 6	Hours
15	Biodiesel Content	D-7371	6-20	% of volume
16	Lubricity, HFRR at 140 °F	D-6079	Max 520	Micron

Automotive Diesel Oil, www.pertamina.com (accessed 19 June 2006) SNI Biodiesel No. 04-7182-2006, based on ASTM D 6751 & EN 14214

13

III. BIODIESEL IMPLEMENTATIONS

Monitoring and Evaluation of Biodiesel Utilization

Biodiesel Quality

	Biodiesel Quality Test Result					
2010 2011 2012 2013				2013	2014	
SNI	7182:2006	7182:2006	7182:2006	7182:2012	7182:2012	
Total of samples	-	15	15	15	12	

Biodiesel Blending Quantity (Volume)

	Blending Biodiesel with Diesel Fuel					
	2010	2011	2012	2013	2014	
Total of samples	8	14	65	95	223	
% Mandatory	5%	5%	7,5%	7,5% - 10%	10%	
Average	6,08%	5,2	7,46%	9,61% *)	8,3%	

Source: ESDM Presentation 2015

IV. CHALLENGES OF BIODIESEL

CHALLENGES

- Improving quality of biofuel Revision SNI: stability, glyceride content, acid number etc Development of HVO
- Improving national technological capabilities on biofuel processing Research and Development on biofuel process
- The price of biofuel that has not yet competitive in compare with fossil fuel
 Feedstock diversification and effective technology will decrease the price of biofuel; subsidize
- Land availability for biofuel development Land availability inventory, synchronizing data among Forestry Department, National Land Affairs Agency and Regional Government

Biodiesel Issues PT. Sintong Abadi 30.450 MT/Th PT. Wilmar Cemerlang Bioenergi Indonesia PT. Sinar Alam Permai 41.400 MT/Th energi perkasa 400.000 MTl/Th 850.000 MT/Th PT. Ciliandra MT/Th enera B-20 PT. Wilmar Nabati Indonesia 690.000 MT/Th PT. Eterindo Nusa Graha PT. Indo Biofuels Energy 60.000 MT/Th PT. Multi Energi Nabati 20.000 MT/Th Total Capacity: 40.000 MT/Th 4,469,000 kL/year

- Feedstock sustainability (volume and price)
- Automotive and heavy equipment industry readiness
- · Support facilities and biodiesel production in east area of Indonesia

V. RESEARCH AND DEVELOPMENT

19

R&D Activities on B20 (2014-15)

20

Field Testing of B20 on Vehicles

Road Condition	Distance (km)	Perc %
Highway (Asphalt+Concrete)	220	43,3
General Asphalt	81	15,9
Climbing-Down hill	195	38,4
City road	12	2,4
Total per day	508	

21

Fuel System Test of B20

■Test bench

Operation Cond	dition	Fuel Temperature		
Pump speed	2000rpm	Pump inlet	60°C	
Injection pressure	200MPa	Injector return	150°C	

■Injector specification

Development Of HVO Process (PERTAMINA)

Rating of Engine Components (TOYOTA Innova)

Quantity of deposit, sludge & scratch between B20 and B0 were similar 25

Power & Fuel Economy

Emissions of TOYOTA Innova

Rating on Fuel Injection parts (Denso)

Fuel Injection Characteristics of B20 (Denso)

Injector shows constant injection quantity during 750 h durability test

Engine Durability Test (200 kW at BTMP)

- Maximum power has slightly lower for B20
- Maximum power tends to decrease 3-5%
- Fuel filter is recommended to be changed earlier

1

29

Source : Renewable Energy Directorate of MEMR & Pertamina

Hydrotreating of Vegetable Oil (Pertamina)

	Petroleum ULSD	Biodiesel (FAME)	Pertamina HBD	Commercial HBD
Oxygen Content, %	0	11	0	0
Specific Gravity	0.84	0.88	0.776	0.779
Sulfur content, ppm	<10	<1	< 3	< 3
Heating Value MJ/kg	43	38	-	
Cloud Point ° C	-5	-5 to +15		7
Pour Point, ° C			+15 s/d +18	
Distillation, ° C	200 to 350	340 to 355	269 to 317	269 to 313
Cetane Number	40	50-65		
Cetane Index			65-67	>56.5
Stability	Good	Marginal	Good	Good
Parrafin % wt			100%	100%
Total Aromatic	19		0	0.2
Ash Content wt%	<0.001		<0.004	<0.001
Flash Point C			116	99
Lubricity (HFRR) um	324		200- 500	360

31

Testing Results: Hydrotreated Biodiesel (HBD)

	CO	HC	NOx	HC+NOx	CO ₂	Particulate	FE
The state of the s	(g/km)	(g/km)	(g/km)	(g/km)	(g/km)	(g/km)	km/litre
Based Market	1,239	0,132	0,235	0,367	262,940	0,163	0.04
Diesel	1,239	0,132	0,235	0,367	202,340	0,163	9,91
Hydrotreated	0,725	0.075	0,227	0,302	242,917	0.049	10,78
Biodiesel	0,725	0,075	0,227	0,302	242,917	0,049	10,70
Changes (%)	- 41.5	-43,2	-3,4	-17.7	-7.6	-69.9	8,8

- ☐ Higher Cetane Number and Low Sulphur Content
- ☐ Lower emissions than the best commercial diesel fuel in Indonesia
- Better fuel consumption
- □ Potential candidate as blending component for B30 & higher (FAME limitations)

Biodiesel Application on Marine Engine

- Engine for land transportation is commonly used as marine engine
- Very few research of utilization biodiesel on marine engine in Indonesia
- Testing results of biodiesel in NMRI will be valuable additional information for marine engine user in Indonesia and fuel quality standard
- More comprehensive study on marine application will be proposed to Ministry of Energy and Mineral Resources on 2016

33

Thank you for your attention