第166研究部会

スチールコイル搭載船の船殻強度に関する研究

報告書

昭和52年3月

社団法人
日本造船研究協会
本調査研究は、大型スチールコイル積載時に二重底構造にかかる直接荷重分布を模型実験及び理論解析により、適切な船殻強度計算の方法を導き出し、より合理的な船殻設計・設付方法・ダンネージの配置等のための指針を確立することを目的とした昭和51年からの2ヶ年計画であり、本年度は主として基礎的な調査、すなわち、スチールコイルの性状、製造概略、スチールコイル搭載の実際と損傷例および模型実験、さらにスチールコイル搭載時におけるダンネージの挙動および荷重分布、パネルの強度について調査を行なったものである。
は しか き

本報告書は、日本造船振興会の昭和51年度補助事業「船舶の構造・性能に関する基礎的実験」の一部として、日本造船研究協会が第166研究部会においてとりまとめたものである。

第166研究部会委員名簿

部 会 長	山 口 勇 男 （日本海事協会）	
幹 事	田 塚 武 夫 （日本郵船）	西 村 充 男 （日本海事協会）
	日 比 野 裕 田 （三菱重工業）	
委 員	伊 東 進 夫 （川崎汽船）	大 浦 啓 義 （佐世保重工業）
	今 村 以 男 （三井造船）	酒 井 利 夫 （日立造船）
	田 坂 由 輝 （川崎重工業）	酒 戸 恒 男 （住友重機械工業）
	鈴 木 啓 輔 （丸場ドック）	近 隅 一 （大阪造船所）
布 村 健 昭 （昭和海運）	櫻 原 亘 （日本郵船）	
原 洋 一 （日立造船）	松 本 宏 之 （石川島播磨重工業）	
森 川 卓 （日本船主協会）	矢 野 利 四郎 （来島どっく）	
米 田 務 （大阪商船三井船社）	渡 辺 明 （山下新日本汽船）	
渡 辺 勉 （日本鋼管）	渡 辺 奉 昭 （住友金属工業）	

●
1. 言 説 .. 1
2. スチールコイルについて（日本鋼管・住友金属工業） 4
 2.1 スチールコイルの製造概要 .. 4
 2.1.1 製鋼および分包工程 .. 4
 2.1.2 熱処理工程 .. 4
 2.1.3 冷延工程 .. 4
 2.2 スチールコイルの種類・寸法・重量等 ... 4
 2.2.1 種類 .. 4
 2.2.2 寸法・重量等 .. 4
 2.3 スチールコイルの性質 .. 9
3. スチールコイル搭載の実際と損傷事例（船主協会、住友金属工業） 11
 3.1 スチールコイル搭載の実際について ... 11
 3.1.1 運送契約 ... 11
 3.1.2 載荷と契約の実態 .. 11
 3.1.3 搭載の実態 .. 12
 3.2 スチールコイル搭載に伴う損傷事例 ... 19
 3.2.1 スチールコイル搭載に伴う損傷原因 ... 19
 3.2.2 損傷の一例 .. 19
 3.3 船体協会の稟付事例 .. 19
4. スチールコイル搭載に関する模型実験（三菱重工業） 22
 4.1 スチールコイルによる荷重 ... 22
 4.1.1 模型 ... 22
 4.1.2 実験方法 .. 22
 4.1.3 コイル荷重の設定理論 ... 23
 4.1.4 実験結果 .. 24
 4.1.5 考察 ... 24
 4.1.6 まとめ ... 25
 4.2 二重板フロアの強度 ... 25
 4.2.1 模型および荷重設定 ... 25
 4.2.2 実験方法 .. 25
 4.2.3 実験結果 .. 25
5. スチールコイル搭載時におけるダンネージの挙動および荷重分布（川崎重工業） 36
 5.1 はじめに ... 36
 5.2 FEM計算によるスチールコイルダンネージの挙動と荷重分布の検討 36
 5.2.1 解析対象 ... 36
 5.2.2 計算モデル ... 37
 5.2.3 荷重条件 .. 37
5.2.4 計算ケース

5.2.5 計算結果

5.3 簡易計算法の導入とこれによるダンネージの挙動と荷重分布の検討

5.3.1 ダンネージを完全弾性とした場合

5.3.2 ダンネージの塑性化を考えた場合

5.4 荷重分布に対するダンネージの変位剛性、板厚およびスチールコイルの圧、重量の影響

5.4.1 計算方法および計算ケース

5.4.2 計算結果

5.5 考察

6. パネルの強度（住友重機械工業、三井造船、石川島播磨重工業、日立造船）

6.1 パネルの塑性崩壊

6.2 パネルの弾性崩壊（FEM による解析例）

6.2.1 はじめに

6.2.2 解析対象

6.2.3 計算

6.2.4 計算結果

6.2.5 検討

6.2.6 まとめ

6.3 矩形板の崩壊に対する貫力の影響

付録
1. 緒 言

鋼材の輸出は、我が国の輸出物の中で大きなウェイトを占めているが、特に最近、熱、冷延コイル、いわゆるステールコイルの輸出が増加しつつあり、又、コイル自体も大形化の傾向にある。

これに伴ない、ステールコイル搭載船に、二重底、特に内底板に損傷を生じたケースがある。

型鋼、厚板、スラブ等一般鋼材の積付けにあっては、荷物重量を二重底構造部材の中でも比較的剛性の高い実体肋板や縦桁で直接支持させるような積付け方式をとることが可能であるが、コイル類では、コイルの寸法や荷姿の関係で、このような積付けは一般には困難であるので、コイルの重量を目安にボットムダンネージを介して直接内底板で支持させるような積付け方式が通常とされている。

したがって、ステールコイル搭載船の船殻強度を検討する場合には、ダンネージの挙動を明らかにし、それがステールコイルの荷重をどのように船殻に伝達するかを正確に把握しなければならないが、このような分野の研究は従来あまりなされていない。

本研究は、ステールコイル搭載船の二重底に作用する直接荷重分布を、模型実験及び理論解析の面から検討することにより適切な船殻強度計算法を導き出し、より合理的な、船殻設計、積付け方式及びダンネージの配置等のための指針を確立することを目的とするものである。

本研究は、本年度及び次年度の2年度にわたって継続される予定で、本年度は主として基礎的な研究を行なった。次年度は本年度の研究成果をもとに、実用面への拡張を主眼とした研究を行なう予定である。

以下、本年度の研究概要について述べる。

1.1 スチールコイルについて

ステールコイル搭載船の船殻強度に関する研究を進めるに当たって、搭載の対象となるステールコイルそのものの性状を把握しておくため、製造法の概略、寸法、重量及び剛性等について調査した。

ステールコイルには、熟延コイルと冷延コイルがあり、冷延コイルは、製鋼、冷延、熟延の各工程後、酸洗い工程を経て、冷延、焼純の工程が更に追加される。
熟延コイルは材料強度にすぐれているため、主として強度部品に使用されるのでに対し、冷延コイルは表面状況、寸法精度、加工性にすぐれているので、主として薄肉製品に使用されている。
また、コイルの剛性を調査するため、多段積み計測を行なった結果、調質圧延コイルの方が圧延のままのコイルよりも、たわみ剛性が大きいことが判明した。

1.2 スチールコイル搭載の実態と損傷例

ステールコイル搭載の実態を、運送契約、契約船型及び積付け方法の面から調査し、損傷船との相関についても調査した。

運送契約としては、積荷、揚荷に要する手配及び費用一切船主に無関係で、荷送人の手配及び費用で船殻され、荷受人の手配及び費用で揚荷される、いわゆるFIOS方式（Free in out stowed and secured）と、積荷、揚荷に要する手配及び費用一切が船主負担でなされる、いわゆるBerth Term方式があるが、損傷は前者の方に比較的多い。
契約船型としては、次の5ケースに大別され、ケースBの場合に比較的損傷が多い。

ケースA：6,000 DW から 15,000 DW の中高速船で、多くの場合ボットム・シーリングを装備している。
一般的には、揚荷装置も5トンないし10トンデリックが主流であるため、小形のコイルを搭載する
ケースB：15,000DWTから20,000DWTの船尾機関型中速船で、ボット・シーリングを装備しないものが多い。この船型は、大口径鋼管、長尺物、重量物などの積載を考慮して、大型引出及び10トンないし25トン級のゲートを装備しているので、大形のコイルを積載する場合が多い。

ケースC：15,000DWTから30,000DWTの鋼材専用定期船でコイルを積載することは少ないが、鋼材積載の一部として各種のコイルを積載することが多い。

積付け要領は、各船会社毎に標準をもっているが、次の原則は各社共通のようである。
(a) コイルのコアを船首尾方向、すなわち航跡横積とすら。
(b) 積付け段数は、二重底の強度により加減するが、その基準は、鈍角形の積付け許容度数により定める。一般的には、5トンコイル以下は3段、10トンないし15トンコイルは2段、15トンコイル以上は1段積みが多い。
(c) 貨物の破損には、シャアリング、チャッキング及びワイヤーラッキングを行ない、かつ、キーコイルにより呼びピローロッキングを行なう。

なお、スチールコイルの積載規定は鋼業会議の標準も参考までに調査した。

スチールコイル積載船は、他の荷物積載船に比較して、二重底構造、タンクサイドプラケット及び隔壁下部構造等に規模が多い。コイル揚げ後に残された絨布積載の損傷が例れの原因によるものかの判定は、一般には非常に困難であるが、少なくとも、二重底に対する単位積載荷重の等分布荷重ベースに換算した場合、圧密度が求められる以上の荷重を与える地種の荷物（例えば、非焼鍛鉄等）積載の場合に比較して損傷の頻度、範囲ともに大きいことが調査の結果判明した。

1.3 スチールコイル積載に関する模型実験
スチールコイル積載時における二重底の挙動を知るために次の2種の模型実験を実施した。
(a) 船が動揺したとき、スチールコイルによって船体及び二重底に加わる荷重の大きさを求める実験。
(b) 二重底肋板の集中荷重による座屈強度を求める実験。

(b) は、大形スチールコイルの1/5程度の縮尺模型を使用して動揺試験を行なったもので次の結果が得られた。
- ユーキーコイルはなるべく壁から離して設ける方がよい。
- 80Kコイルが壁から3メートル以上離れていて、キーコイルと内板板の間隔がキーコイル直径の1/5程度以上あるならば、船側に加わる荷重Fは、上式の値で与えられる。

\[F = 2.5 \times W \sin \theta \]

- W : コイル1個の重量
- \(\theta \) : 船体傾斜角

(b) 実験結果は解析中であるが、目下次のことが明らかにした。
- ダンネージの荷重による変位曲線は、変位がダンネージの厚さに比例して変化する。
- 助板の重量荷重は、ウエブスチフナによって上昇する。

1.4 スチールコイル積載時におけるダンネージの挙動及び荷重分布
本態ダンネージの挙動と荷重分布を明らかにするため理論解析を行なった。
先ず第1段階として、接触問題を解くFEプログラムにより、スチールコイルとダンネージの接触圧、ダンネージの変形、ダンネージ内の荷重分布等を正確に計算した。この結果、スチールコイルには変形はほとんどなく、ダンネージはスチールコイルそのままの形状で変形を受けること、ダンネージ内の荷重の水平方向の分散あり、変化が明らかになった。
したがって、内底板上の荷重分布は、ダンネージを単にパネとみなした簡単計算法でも十分な精度を求め得ることを確認できた。

次に、この簡易計算法により、ダンネージの物性（荷重と変形との関係）、ダンネージの板厚、コイルの重量、径等が内底板上の荷重分布にどのような影響を及ぼすかを検討した。

この結果、荷重分布に対するダンネージの物性の影響は大きいことが明らかになったが、ダンネージの物性に関しては、特にダンネージの塑性域において不明確な点が多いので、将来木材の圧縮実験等で更に検討を加える必要がある。

1.5 パネルの塑性崩壊

内底板の板厚を決定する際の基準を作成する場合、なるべく簡単な算式にすることが望ましいが、その1つの例としてパネルの圧縮型塑性崩壊を基準とすることが考えられる。そこでパネルの周辺固着条件、中央開節線の長さ、荷重幅、側力等が最終崩壊荷重に及ぼす影響を調査した。

また、内底板パネルをFEMによる弾塑性解析することにより、塑性域の進展状況、荷重とパネルの変形状況も調査した。

この結果、次の事項等が明らかになった。

- 中央開節線を大きくすると崩壊率は急激に増加する。
- 四辺支持の場合に対する、長辺支持、短辺固定の場合の安全率の変化は、中央開節線を大きくすると増加の傾向にあらる。
- また、四辺固定の場合の安全率は、四辺支持の場合のそれの2倍となる。
- 荷重幅を大きくする崩壊率は増加の傾向にあらるが、その効果はあまり大きくはない。
- 弾力を考慮した場合の、最終崩壊荷重の増加率は、通常用いられる板厚（16mmないし20mm）の範囲では0.6ないし1.0程度である。
2. スチールコイルについて

2.1 スチールコイルの製造概要

2.1.1 製鋼及び分塊工程

溶鉄炉において、鉄鍊鉄を還元して製造された鈍鍊に、鉄くず等を加えて熔解し、旋盤等で不純物を酸化除去し、
塊を製造製鋼工程、更に、塊を加熱均熱、塊圧延の工程を通すことにより、スチールコイル用スラブが製造され
る。

一方、近年では維穂から一挙にスラブを造る連続鋳造法が採用されてきている。

2.1.2 熱延工程

スラブは、ホットストリップミルにより、加熱→圧延→仕上げ圧延→巻取りの各工程を連続的に行ない、熱延コ
イルに製造される。コイルの機械的性質を得るために、仕上げ圧延機出口及び巻取温度をそれぞれ800 ～ 900℃及
び550 ～ 700℃にコントロールする。

巻取機を出したコイルは、重量の計測を行ない、検査を受けてそのまま製品として出荷される場合もあれば、需
要に応じてロットプラスト、酸洗い、巻取りの調圧圧延、または台調整のスリッターライン等の工程を通じて熱
延コイルとして製品化される。

2.1.3 冷延工程

酸洗いされてスケールを除去された熱延コイルは、常温に於いて、大容量で高能率のタンデムミル、または、多品
種に対応できるレバーマステイ等の圧延機により必要な厚さに圧延される。スチールコイルの製造工程の一例を図2.1
1に示す。

2.2 スチールコイルの種類、寸法、重量等

2.2.1 種類

スチールコイルは熱延コイルと冷延コイルに分けられ、両者の製造方法は異なる。冷延コイルは、熱延よりも多く
の製造工程、即ち冷延工程及び焼純工程を通る。

両者の特徴の差異を表2.2.1に示す。

<table>
<thead>
<tr>
<th>コイルの種類</th>
<th>板厚</th>
<th>特徴</th>
</tr>
</thead>
</table>
| 熱延コイル | 1.0mm〜19mm | 板幅種類、材質強度、特殊材質（耐
食性、耐海水性）に優れており、強
度部品や補強材等に利用される。 |
| 冷延コイル | 0.1mm〜3.2mm | 表面光、寸法精度、加工性に優れた
特性を有し、主として簿片製品に利
用される。 |

2.2.2 寸法、重量等

スチールコイルの形状寸法及び重量は製鉄各社の設備により異なるが、A・B二社の最近の製造実績及びA、B
二社を含む各社のスチールコイルの仕様を後記に示す。

(1) A社

熱延コイル及び冷延コイルの寸法と重量の範囲をそれぞれ図2.2.1及び表2.2.2に示す。
図 2.2.1 熱延コイルの重量範囲
（コイルの内径：普通材 76cm，破断材 61cm）

表 2.2.2 冷延コイルの重量範囲
（コイルの内径：厚さ2.3以上 61cm，その他普通材 51cm）

<table>
<thead>
<tr>
<th>工場名</th>
<th>最大コイル重量 (Ton)</th>
<th>製造可能巾 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>18</td>
<td>610～1829</td>
</tr>
<tr>
<td></td>
<td>出荷量</td>
<td>重量範囲 (Ton)</td>
</tr>
<tr>
<td></td>
<td>国内</td>
<td>5 ～ 10</td>
</tr>
<tr>
<td></td>
<td>輸出</td>
<td>5 ～ 5</td>
</tr>
<tr>
<td>b</td>
<td>30</td>
<td>610～1829</td>
</tr>
<tr>
<td></td>
<td>国内</td>
<td>10 ～ 15</td>
</tr>
<tr>
<td></td>
<td>輸出</td>
<td>10 ～前後</td>
</tr>
</tbody>
</table>

（3）各社のステールコイルの仕様
各社のステールコイルの仕様内、特にコイルの重量の大なるものに注目して、鋼材メニュアルシリーズ（日本鉄鋼協会編1972年）より一部抜粋したものを参考として表 2.2.3 及び表 2.2.4に示す。
輸出用コイルの重量は、製鉄所の製造能力よりも、むしろ現在では受入れる港の荷役設備能力に左右されている。
熱延コイルの板厚は将来 25.4mm程度のものの製造計画がある。
図2.2.2
巾別スラブ重量（熱延コイル）

図2.2.3
コイル巾と外径の関係
（熱延コイル）

図2.2.4
全生産量に占めるコイル巾別の比率
（熱延コイル）

図2.2.5
全生産量に占めるコイル板厚別の比率
（熱延コイル）
表 2.2.3 各社の熱延コイルの仕様（鋼材マニュアル：日本鉄鋼協会，1972年）

<table>
<thead>
<tr>
<th>会社名</th>
<th>ミル名</th>
<th>能力（万トン/年）</th>
<th>圧延可能寸法</th>
<th>コイル径最大（mm）</th>
<th>コイル重量（t）</th>
</tr>
</thead>
<tbody>
<tr>
<td>新日本製鉄</td>
<td>名古屋</td>
<td>450</td>
<td>1.2~1.7</td>
<td>550~1600</td>
<td>1930</td>
</tr>
<tr>
<td></td>
<td>君津</td>
<td>480</td>
<td>1.2~1.9</td>
<td>860~2180</td>
<td>2600</td>
</tr>
<tr>
<td></td>
<td>大分</td>
<td>330</td>
<td>1.2~1.6</td>
<td>700~2100</td>
<td>2580</td>
</tr>
<tr>
<td>日本鋼管</td>
<td>福山1号</td>
<td>480</td>
<td>1.2~1.7</td>
<td>650~1900</td>
<td>1905</td>
</tr>
<tr>
<td></td>
<td>福山2号</td>
<td>264</td>
<td>1.2~1.7</td>
<td>600~1630</td>
<td>1905</td>
</tr>
<tr>
<td>川崎製鉄</td>
<td>千葉2号</td>
<td>360</td>
<td>1.2~1.6</td>
<td>610~1880</td>
<td>1880</td>
</tr>
<tr>
<td></td>
<td>水島</td>
<td>450</td>
<td>1.2~1.5</td>
<td>600~2200</td>
<td>2300</td>
</tr>
<tr>
<td>住友金属工業</td>
<td>熊島</td>
<td>360</td>
<td>1.0~1.6</td>
<td>610~1673</td>
<td>2080</td>
</tr>
<tr>
<td>松戸製錬所</td>
<td>加古川</td>
<td>120</td>
<td>1.2~1.6</td>
<td>600~2080</td>
<td>1900</td>
</tr>
<tr>
<td>日新製鉄</td>
<td>舞1号</td>
<td>280</td>
<td>1.0~1.27</td>
<td>500~1520</td>
<td>1650</td>
</tr>
</tbody>
</table>

表 2.2.4 各社の冷延コイルの仕様（ダンデミル）

（鋼材マニュアル：日本鉄鋼協会編，1972年）

<table>
<thead>
<tr>
<th>会社名</th>
<th>ミル名</th>
<th>能力（万トン/年）</th>
<th>圧延可能寸法</th>
<th>コイル重量（t）</th>
</tr>
</thead>
<tbody>
<tr>
<td>新日本製鉄</td>
<td>名古屋2号</td>
<td>120</td>
<td>0.3~0.5</td>
<td>700~1600</td>
</tr>
<tr>
<td></td>
<td>君津2号</td>
<td>120</td>
<td>0.25~0.52</td>
<td>500~2080</td>
</tr>
<tr>
<td>日本鋼管</td>
<td>福山1号</td>
<td>150</td>
<td>0.3~0.52</td>
<td>762~1880</td>
</tr>
<tr>
<td>川崎製鉄</td>
<td>水島</td>
<td>100</td>
<td>0.25~0.52</td>
<td>600~1600</td>
</tr>
<tr>
<td>住友金属工業</td>
<td>熊島</td>
<td>114</td>
<td>0.25~0.52</td>
<td>600~1625</td>
</tr>
<tr>
<td>松戸製錬所</td>
<td>加古川</td>
<td>115</td>
<td>0.2~0.52</td>
<td>600~1500</td>
</tr>
<tr>
<td>日新製鉄</td>
<td>舞</td>
<td>80</td>
<td>0.2~0.25</td>
<td>650~1500</td>
</tr>
<tr>
<td>東洋鋼板</td>
<td>下松1号</td>
<td>74</td>
<td>0.152~2.3</td>
<td>515~1240</td>
</tr>
</tbody>
</table>
2.3 スチールコイルの剛性

スチールコイルの剛性を調べるため、圧延のままの熟延コイル及び調質熟延コイルの2種類につき、多段積みによる縮み量及び吊り上げによる伸び量を計測した。

更に、コイル内の空隙率を測定して推定を行なった。これらの結果を表2.3.1、表2.3.4に示す。

結論として次のことが言える。

1) 空隙率は圧延のままのコイルでは約4％、調質熟延コイルでは約2％である。

2) 多段積み時の締め付けを応じて行なったが、その後コイルはスリッパータイプ（入調整）を通っておらず、エッジに凹凸が生じ、計測誤差が大きく、コイルのたわみ量を正確に計ることができなかったが、調質圧延コイルの方が、圧延のままのコイルに比べてたわみ剛性が大きい。

3) 調質圧延コイルを吊り上げた時の伸び量10mmはコイルの空隙のためにゆるんだと考えられる。

<table>
<thead>
<tr>
<th>表2.3.1 熱延コイル寸法等</th>
</tr>
</thead>
<tbody>
<tr>
<td>压延方法</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>压延のまま</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>調質圧延</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<p>| 表2.3.2 多段積時コイルの縮み量 | (正符号：伸び量，負符号：縮み量) |
|-----------------------------|</p>
<table>
<thead>
<tr>
<th>压延方法</th>
<th>コイルNo.</th>
<th>dH (mm)</th>
<th>dDv (mm)</th>
<th>dH1 (mm)</th>
<th>dv1 (mm)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>压延のまま</td>
<td>1</td>
<td>0</td>
<td>-2</td>
<td>+1</td>
<td>+1</td>
<td>1/2/3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>1/2/3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-2</td>
<td>-6</td>
<td>-2</td>
<td>-1</td>
<td>1/2/3</td>
</tr>
<tr>
<td>調質圧延</td>
<td>1</td>
<td>-1</td>
<td>+3</td>
<td>0</td>
<td>-2</td>
<td>1/2/3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>-3</td>
<td>1/2/3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>1/2/3</td>
</tr>
</tbody>
</table>

No.4コイル：8.04t
No.5コイル：8.24t
No.4コイル：9.02t
No.5コイル：9.07t
No.6コイル：8.97t
<table>
<thead>
<tr>
<th>表 2.3.3</th>
<th>No.2 調質圧延コイル吊り上げ時のコイルの伸び量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dn</td>
<td>Dv</td>
</tr>
<tr>
<td>(mm)</td>
<td>(mm)</td>
</tr>
<tr>
<td>0</td>
<td>+10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表 2.3.4</th>
<th>コイルの空隙率</th>
</tr>
</thead>
<tbody>
<tr>
<td>圧延方法</td>
<td>コイル#</td>
</tr>
<tr>
<td>圧延のまま</td>
<td>1</td>
</tr>
<tr>
<td>調質圧延</td>
<td>2</td>
</tr>
<tr>
<td>調質圧延</td>
<td>1</td>
</tr>
<tr>
<td>調質圧延</td>
<td>2</td>
</tr>
</tbody>
</table>

W：コイルの計重
W₀ = \(\frac{\pi}{4} (D^2 - d^2) \times L \times 2.85 \times 10^{-3} \) (Kg)
L：コイル長（mm）
δ：空隙（mm）
3. スチールコイル搭載の実態

3.1 スチールコイルの積荷実態について

3.1.1 運送契約

F.I.O と Berth Term

Steel Coil の運送契約は、主として次の二種類である。

(1) F.I.O (Free in & Out) または F.I.O.S (Free in, out, Stowed and secured)：積荷費用船主無関係。貨送人の費用で積荷され、荷受人の費用で揚荷される。

即ち、本契約によれば、船主は船を指定期日までに積荷ベースへ回航し、船内を提供するのみでよく、積荷に必要なダンネージ、ラッシング材等一切の費用、フォークリフト等の補助荷役機器、港湾荷役者等は荷送人側で手配され、勿論費用も負担される。

(2) Berth Term (Liner Term: 積荷費用船主負担)

本契約は、F.I.O または F.I.O.S と全く逆に、一切の積荷に関する手配及び費用は一切船主側で行なわれる。勿論ライナーカーゴであっても、契約によっては、F.I.O が適用されることは少ないわけではない。

3.1.2 船型と契約の形態

輸出先、即ち航路と仕向地、鋼材メーカー及び圧延工場別に様々の船型が多様な契約の下に配船されているが、極めて類形的にその船型と契約のあり方を大別すると、次の通りの区分が概要的に浮び上がる。

＜Case A＞

在来ライナーのベースカーゴ（底荷）として、ベースタグで積取

この場合、在来ライナーであるから、船型は 6,000 DWT から 15,000 DWT の中／高速船で多くの場合ボットムシーリングを装備している。

一般的には、カーゴギヤーも 5 T デリック～10 T デリック方式が主流のため、大型コイルを積取るには特別の考慮が必要となるので、小型コイルが多いようである。従って、この場合、貨物単重及びロットも比較的小さく、ボットムシーリングもあることで、本研究対象としては問題は少ないと思われる。

＜Case B＞

定期航路であるが、ベースカーゴというよりむしろ全積荷中に占める鋼材、コイル類の比率が大きくなったケース。勿論この場合、より鋼材材質に適した船型として、新しい多目的のフィンデッカーが使用されている。積荷重量 15,000 T ～20,000 T 級航路の中速船が多いようである。

このような船型は、大口径鋼材、長尺物、重量物等の積載を考慮して、大型ハッチ 10 T ～25 T 級荷役施設を装備しているので、コイルを含む鋼材の単独及びロット共に大きいための積荷可能であり、一般的にこの種の多目的船は、搬送物（機械類、製品類等）の積載とグラブ荷役に対する配慮もなされているのが普通でボットムシーリングは装備しないものが多い。

このようなトレードを考慮した新しい多目的船は、今後の在来鮮プレース需要の中心となる船型と云われているので、世界的造船各社はそれぞれに工夫を凝らした標準船型を発表しているが、今回の研究の対象としては、このタイプの船型を中心にとらう。

＜Case C＞

Case A、B とは異なり、鋼材専用の不定期配船で契約は勿論 F.I.O である。

船型は、15,000 DWT から 50,000 DWT のツインデッカー又はカーゴギヤー付パルカーを中心にであり、最近は 50,000 DWT 型を越えるものに、航路、仕向先によっては配船されるようになった。

コイルで積荷することは少ないが、鋼材積荷の一部として、各種コイルを積取ることが多い。
30,000DWT以上のものは、鉄筋石のオルタネートローディングを可能にすると従来のacも、大型船の効果で、自動的に二重底構造、タンクトップ強度を考慮する必要が大きい。剛材講義のため、G&EW 通過となりやすく、今後のコイルの大型化の傾向によっては、次第に問題を生ずることが懸念される。

次に、上記 Case A, B, C、の代表的な例としてその代表的配置図とストレージプランの一例を図3.1.1～3.1.4に示す。

3.1.3 積付の実態

(1) 積付計画

積付計画は、各船のKnow Howであり、詳細は各社毎に標準を持っているようであるが、現在のところ、一般的には次の原則は各社共通のようである。

① コイルの位置を検査位置、即ち水準標点とする。
② 標段数は、二次海底路により増減するが、その基準は均等荷物積付許容限度により定める。

しかし、一般的にいえば、5t／coil以下は2段、10t／coil以上15t／coil以下2段、それ以上は1段積が多い。

③ 貨物の安定には、シュアリング、ショッキング、パイプラッシングを行うが、必ずキーコイルによりローリングチェックを行う。

(2) 積荷方法

① 大型トレーラー、マス等が船内まで運送されて来たコイルは、本船荷役装置を用いて船港内に積付される。

② ミルポートでは、岸壁クレーンを用いて積付することもあるが、ライブクレーン等により船内にコイルを乗り入れた場合、各部のダンネージを数を数え、基準を定めるとともに、フーケクリフトはモービルクレーンで所定の位置に積付する。使用されるフーケクリフトはモービルクレーンの要目等の代表的なものは次の通りである。

③ タンクトップの積付位置には、予めコイル1列当たり2〜3列（コイル単体により加減する）のダンネージを検査位置に数え、船内に積載されたコイル用ノーズアタッチメント付フーケクリフトはモービルクレーンで所定の位置に積付ける。

ダンネージは、通常米松材が主体であり、サイズは一般的には、abt 60％×abt 30％、abt 80％×abt 40％断面で、長さは不明であるが、約4m前後のものが多いようである。

ダンネージの長手方向は特に、適当に選定され、入荷の方法で荷重の分散をはかる。

(2) ボーデー部、ホールドフライデー下部のタンクサイドフライデー等の部分は、必要に応じシュアリングを行う。

(4) 構造保全基準は、鉄鋼協会の基準に準ずる。

(5) コイルは、前後方向に若干（約1%程度）の余裕をもとえ、これによりコイル端部の損傷防止とラッシングワイヤーを通す為である。通常は前後方向に数えて4列程度でグループとし、ショッキングを施し、ステールワイヤーによりグループラッシングを行う。

グループ間は、ラッシング作業の為に、所要スペース（約1m程度）を設ける。

(6) 積荷方向には、数コイルに1ケつキーコイルを用いてローリングサイドのチェックとし、安定する。

以上積荷方法に関する写真を写真3.1.1～3.1.8に示す。
図 3.1.2 ストレージプラン（Case A）
図3.1.3 ストウエージプラン（Case B）

図3.1.4 ストウエージプラン（Case C）
＜写真3.11＞：大型トレーラーにて船側まで運搬

＜写真3.12＞：シップポートのジャッキホーンで積荷中

＜写真3.13＞：コイル用アタッチメントを装備した大型フォークリフトが船内で使用される。大型のものは、自重が30トンを超える。
＜写真3.1.4＞：3段積されたコイル。中央部にキーロールが見える。

＜写真3.1.5＞：積荷中のダンネージ状況。この場合4列/1コイルである。
＜写真3.16＞：ラッピング状況

＜写真3.17＞：モービルクレーンによる積荷状況。22t SWL のキャタピラ付である。

＜写真3.18＞：チョッキングを行い積付完了。
3.2 スチールコイル搭載に伴う損傷例について

3.2.1 スチールコイル搭載に伴う損傷原因

スチールコイルは重量物であり、いわばドーナツ状の鋼塊であるといっても差支えないほどコンパクトで軽なものである。従ってその荷役の過程において、または積荷によっては、航海中の船体の振動等の原因により船体損傷の機会は相当多いのが普通である。

特に、スチールコイル積載船は、他の貨物積載船に比べて二重底構造、タンクサイドブレーキ、パルクヘッド下部構造等に損傷例が多い事実であり、この事実が事故研究の発端となった。

原因として考えられるものは、次の3つに大別される。

(1) 荷役時のスリドコンのミスハンドリングに依る損傷
(2) 航海中の船体の振動による荷崩れに起因する損傷
(3) 上記以外のオーバーロードによる損傷

(1)(2)は問題外であるが、(3)は、スチールコイル自体の特性から、均質分布荷重とは見られず、しかも集中荷重と考えるにはサイズが大きすぎて、二重底構造に対してディテールを集中荷重モデルに入れないものに問題がある。

スチールコイル積載時、二重底を始めとする船内船構造にかかる力の算定方法が確定されていない現在、スチールコイル損傷者に残された船体構造の損傷が、上記の理由によるもののかの判断は不可能であるが、少なくとも二重底に対する単位面積当たりの荷重分布ベースで見ても、重量同じであればそれ以上の荷重を与える他種貨物（例えば、非鉄製品等）積載の場合に比べても損傷の頻度、範囲に大きな相違は事実である。

以上に述べた実例を示す。

3.2.2 損 傷 の 一 例

写真3.2.1～3は、スチールコイル全積積載船の損傷の一例である。

本船は、1,4000DW型シスタークウであり、二重底構造は通常のロング構造方式である。

損傷箇所は、コイル積載部の全域にわたり、損傷箇所は、タンクトップ、パースロング、ホールドフレーム下部のタンクサイドブレーキからホールドビラーとタンクトップの取合窓部に至る広範囲なものである。

従って、本船の場合、前記原因がすべて重複しているのではないかと推察され、他スチールコイル積載船によく見られる損傷の特長をすべて含んでいるものと思われるので、ここに例示した次第である。

写真は、本船の損傷修理内の状況である。これによりスチール積載船の荷物損傷の一端が理解できよう。

3.3 鉄鋼協会の積付標準

鉄鋼製品の船積輸送する際の、製品や船体の損傷を防止するため、鉄鋼協会では各種の積付標準度ある積付スケジュールを作成している。

想定、厚板およびスラブの積付けにおいては、荷重集中を船体の二重底構造材の当たら、比較的堆積を有するソリッドフロアやガーダに乗せて積付けることが可能であり、船体の強度上問題は少ない。

また大径丸棒の積付けにおいては、空間の占める度合いが大きく、他の製品に比べて積荷に加える荷重が小さいので、船体の損傷する危険性はなく、もしくは製品自身の損傷を防止するために、積付スケジュールを作成している。

一方、スチールコイルの場合、貨物重量が大であり長さも短いため、ボトムデッケージを介して内底板によって支持されている。この内底板の強度計算値を確保しない限り、積付標準の作成は不可能であるので、鉄鋼協会では今後実施している実験をもとに研究する結果が得られるまでに積付標準を作成するためで、従来の積付をそのまま取扱い入った積付標準を作成している。

参考のため、鉄鋼協会において作成した積付スケジュール積付標準度ある、他の製品の積付例として大径丸棒の積付スケジュールを示す。
＜写真3.2.1＞：ハッチウェイを外れた頭部側板部三要素が、約10㎝×約4㎝の広範囲にわたり、タンクトップ、リバースロング、フロア上部共に大きな損傷を受けている。

＜写真3.2.2＞：写真3.2.1の暗髪コルデーラと、トランスパルクレットがの損傷。同じくハッチウェイを外れた部分であるが、このような場合でも、コイルはコンパクト中に、何分多数に詰め込まれることが多い。タンクトップとピラーの取合も解体していることに注意。
写真3-2-3: ホールドフレーム下部ブラケットが破損新分した。
4. スチールコイル搭載に関する模型実験

4.1 スチールコイルによる荷重

4.1.1 模 型

模型の寸法は実船の約1/10となるように定めた。

(1) スチールコイル

直径475mm、長さ200mmの厚肉パイプに円型鋼板を溶接してめ込んだもののでほぼ中央に近い。重量は約250kgである。

(2) 船体

図4-1に示すのような長さ5.6mのI型梁で両端に相当する板を立てる。中央に支点を設け、これを中心に動揺させる。船側壁に加わる荷重は、船側に相当する板（幅210mm、板厚12mm）の付加部四面に貼った6枚の変位ゲージで計測した。

検定曲線はコイルが相当する部分を油圧ジャッキで押して求めた。

また、I型梁の上面には一部に模型の切り込みを入れ、その付根に貼った変位ゲージにより、二重底フロアに加わる荷重も計測した。

(3) ダンネージ

木製（厚30mm×厚さ10mm、材松材）を2列敷く。

4.1.2 実験方法

(1) 動 携

100t型模型疲労試験機を用いた。これにより、あらかじめ動揺を行なわせるためには、サーボパルプで制御される方式の動揺が好ましいためである。

- 最大傾斜角度 20°
- 動揺周期 60 sec

動揺中心が実船と一致しないこと、および動揺加速度の大きさは、静荷重の垂直成分等に比して小さいことなどにより、動揺周期を実船に一致させることは考えていなかった。

(2) 計 儀 項 目

① 傾斜角度
② 両側壁に加わる荷重
③ キーコイル近傍の二重底フロアに加わる荷重

(3) 記 録

動揺計測および電磁オシロを中心とする。この他に、載荷に加わる荷重の記録には、XYレコーダも併用する。

(4) 実 験 条 件

次の各状態を含めて組み合わせる。

① キーコイル総数7個および10個
② キーコイルのばら方5種

実際に搭載された荷重では、\(0.1 \leq \frac{a}{D} \leq 0.5\)に調整されることが多いがここでは次のように取った。

\[
\frac{a}{D} = \frac{1}{6}, \frac{1}{3}, \frac{1}{2}
\]
4.1.3 コイル荷重の推定理論（図4.1.2参照）

(1) キーコイルとその両側のコイルに作用する力

コイル①の釣合い

\[W \cos \theta = F_{1A} + f_{3A} - f_{2A} \sin \varphi - f_{3A} \cos \varphi \quad \cdots (4.1) \]
\[W \sin \theta = F_{2A} + f_{3A} \cos \varphi + f_{3A} \sin \varphi \quad \cdots (4.2) \]
\[0 = f_{2A} + f_{3A} - f_{1A} \quad \cdots (4.3) \]

コイル③の釣合い

\[W \cos \theta = F_{3A} \sin \varphi + f_{3A} \cos \varphi + f_{2C} \sin \varphi + f_{3C} \cos \varphi \quad \cdots (4.4) \]
\[W \sin \theta = F_{3A} \cos \varphi - f_{3A} \sin \varphi - f_{2C} \cos \varphi + f_{3C} \sin \varphi \quad \cdots (4.5) \]
\[0 = f_{3A} - f_{2C} \quad \cdots (4.6) \]

コイル⑤の釣合い

\[W \cos \theta = F_{1C} - f_{2C} - f_{2C} \sin \varphi - f_{3C} \cos \varphi \quad \cdots (4.7) \]
\[W \sin \theta = f_{1C} - F_{2C} \cos \varphi - f_{2C} \sin \varphi \quad \cdots (4.8) \]
\[0 = f_{2C} - f_{1C} + f_{3C} \quad \cdots (4.9) \]

これらの釣合い式を、(2・A)点と(3・C)点がすべる条件で解く。

\[f_{3A} = \Phi_1 F_{3A} \quad \cdots (4.10) \]
\[f_{3C} = \Phi_1 F_{3C} \quad \cdots (4.11) \]

\[\Phi_1 : コイル間の摩擦係数 \]

それぞれの力は以下の如く求められる

\[F_{1A} = W \sin \theta \left(\frac{3}{2} \cot \theta + \frac{1}{2} \tan \varphi - \frac{3\Phi_1}{1+\Phi_1} \right) - \frac{1}{1+\Phi_1} F_{3C} \quad \cdots (4.12) \]
\[f_{1A} = W \sin \theta \left(\frac{1}{1+\sin \varphi} \left(\frac{1}{2} \cos \varphi \cot \theta - \frac{3}{2} \sin \varphi \right) + \frac{3\Phi_1}{1+\Phi_1} \right) + F_{3C} (1-\Phi_1) \]
\[\left(\frac{\Phi_1}{1+\Phi_1} - \frac{\sin \varphi}{1+\sin \varphi} \right) \quad \cdots (4.13) \]

\[F_{2A} = \frac{1}{1+\Phi_1} \left[3 W \sin \theta + F_{3C} (1-\Phi_1) \right] \quad \cdots (4.14) \]
\[f_{2A} = \Phi_1 F_{2A} \quad \cdots (4.15) \]
\[F_{3A} = \frac{1}{\cos \varphi} \left[W \left(\frac{1}{2} \cos \theta \cos \varphi + \frac{3}{2} \sin \theta \sin \varphi + 2 \sin \theta \right) + R_{3C} (1-\Phi_1) (1-\sin \varphi) \right] \cdots (4.16) \]
\[f_{3A} = \frac{1}{1+\sin \varphi} \left[W \left(\frac{1}{2} \cos \theta \cos \varphi + \frac{3}{2} \sin \theta \sin \varphi \right) - F_{3C} (1-\Phi_1) \sin \varphi \right] \quad \cdots (4.17) \]
\[F_{1C} = W \sin \theta \left(\frac{3}{2} \cot \theta - \frac{1}{2} \tan \varphi \right) + \Phi_1 F_{3C} \quad \cdots (4.18) \]
\[f_{xc} = \frac{1}{\sin \varphi} \left[W \sin \theta \left(\frac{3}{2} \sin \varphi - \frac{1}{2} \cos \varphi \cos \theta \right) + \left(\Phi_1 + \sin \varphi \right) F_{xc} \right] \] ④-19 (4.19)

\[F_{xc} = \frac{1}{\cos \varphi} \left[W \left(\frac{1}{2} \cos \theta \cos \varphi - \frac{3}{2} \sin \theta \sin \varphi + \sin \theta \right) + F_{xc} \left(1 - \Phi_1 \right) \left(1 - \sin \varphi \right) \right] \] ④-20 (4.20)

\[f_{xc} = \frac{1}{1 + \sin \varphi} \left[W \left(\frac{1}{2} \cos \theta \cos \varphi - \frac{3}{2} \sin \theta \sin \varphi \right) - F_{xc} \left(1 - \Phi_1 \right) \sin \varphi \right] \] ④-21 (4.21)

\[f_{xc} = \Phi_1 F_{xc} \] ④-22 (4.22)

\[F_{xc} \] はキーコイルの位置によって算出される。

すなわち、図 4.12 に示した状態でキーコイルの右側の n 個のコイルがある場合、式 ④-23 で与えられる。

\[F_{xc} = W \sin \theta \left(\frac{1}{2} \Phi_1 \right)^{n-1} + \left(\frac{1}{1 + \Phi_1} \right)^{n-1} F_n \] ④-23 (4.23)

ただし、右側の給側壁とコイルの間に作用する力を \(F_n \) で表わしている。

(2) 給側壁に加わる荷重

給側壁に加わる荷重は、式 ④-14、④-15 で与えられる \(F_{2A} \)、\(f_{2A} \) を用いて図 4.12 の状態で、順次給側のコイルに作用する力の釣り合いから求められる。コイルとコイルの接触点だけを除く場合、式 ④-24 となり、コイルと二重底フロア（ダンネージ）の接触点だけを除くとした場合式 ④-25 のようになる。

\[F = W \sin \theta \left(\frac{2}{1 - \Phi_1} \left(\frac{1 - \Phi_1}{1 + \Phi_1} \right)^{m-1} + \left(\frac{1}{2 \Phi_1} \right) \left(1 - \left(\frac{1 - \Phi_1}{1 + \Phi_1} \right)^{m+n-1} \right) + \left(\frac{1 - \Phi_1}{1 + \Phi_1} \right)^{m+n-1} F_n \right) \] ④-24 (4.24)

\[F = F_{2A} \cdot m \] ④-25 (4.25)

\[F_{2A} + F_{2A} = W \sin \theta + F_{2A} = \frac{W}{2} \left(1 - \Phi_1 \right) \left(W \cos \theta + 2 f_{2A} \right) \] ④-26 (4.26)

\[f_{2A} = \frac{1}{1 + \Phi_2} W \cos \theta - \frac{1}{1 + \Phi_1} f_{2A} \] ④-27 (4.27)

ただし、\(F_{2A} = F_{2A} \)、\(f_{2A} = f_{2A} \)

\(\Phi_2 \)：コイルと二重底フロア（ダンネージ）の摩擦係数

4.1.4 実験結果

動量に伴って左右の給側に加わる荷重変化の例を傾斜角を横軸にした X Y レコーダの記録で図 4.13 に示す。

次に、キーコイルの位置によって給側に加わる荷重の大きさがどのようになるかを図 4.14 に示す。また、キーコイルの位置方の影響を図 4.15 に示す。

4.1.5 考 察

図 4.13 を見ると、\(\frac{a}{b} \) でキーコイルが壁に近いときの 1 : 2 例を除き、給側に加わる荷重は、誤り返しによって増加に増加することはないことがわかる。

次に、キーコイルの位置によって給側に生じる荷重の大きさが変化する状況を図 4.14 で見ると、キーコイルが壁から離れるとれて変化に隠されると、およびその大きさは、4.15 に示した理論計算値で与えられることがわかる。以上の結果より、キーコイルが壁から離れたコイルにすべきであることがわかる。

また、キーコイルの位置方の影響を見ると、前述の誤り返しに伴って荷重が増加する例を除き、大きな差はないと

-25-
4.2 二重底フロアの強度

スチールコイルの荷重は、二重底フロアに対して集中荷重となることがあるので、これを実際の実験を行なった。

4.2.1 試験方法

(1) ダンネージの関性

まず、剛性平板の上にダンネージ（厚さ30mm、巾45mmおよび厚さ10mm、巾45mmの2種）を半径400mmの
円筒面で圧縮し、荷重と変位の関係を求める。

(2) フロアの応力分布

A型模型を用いて、応力分布の測定を行った。負荷はコイル模型で行ない、その実験条件は次の通りである。

○加圧点3箇所
1) ダンネージなし
2) 厚さ30mmのダンネージ
3) 厚さ10mmのダンネージ

○支点位置 図4.2.2のRB′点およびQQ′点

(3) 座屈試験

厚さ30mm、巾150mmのダンネージを介して、スチールコイル模型で負荷した。

このときのA型模型の支点はRB′である。

4.2.5 実験結果

まず、ダンネージの圧縮による荷重～変位曲線を示したのが図4.2.3である。これによると、変位は荷重厚さに比例しており、両者はよく似ている。
次に、座屈試験における荷重～歪曲線の代表的な例を各模型毎に図 4.2.4 に示す。
各模型の最高荷重は、次の通りであった。

<table>
<thead>
<tr>
<th>型式</th>
<th>荷重 (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A型模型</td>
<td>23.9</td>
</tr>
<tr>
<td>B型模型</td>
<td>27.3</td>
</tr>
<tr>
<td>C型模型</td>
<td>32.0</td>
</tr>
</tbody>
</table>
図 4.1.4 (a) キーコイルの位置の影響

図 4.1.4 (b) キーコイルの位置の影響
図4.1.5(a) キーコイルのはまり方の影響

図4.1.5(b) キーコイルのはまり方の影響
図4.2.1 フロア模型

表4.2.1 供試鋼板（S841）の引張試験結果

<table>
<thead>
<tr>
<th>板厚 (mm)</th>
<th>試験片方</th>
<th>試験片寸法 (mm)</th>
<th>降伏点 (Kg/㎟)</th>
<th>引張強さ (Kg/㎟)</th>
<th>伸び (%)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>A</td>
<td>45.2×25.04 × 50G</td>
<td>5.6</td>
<td>45.1</td>
<td>3.64</td>
<td>A型モデルに用いた</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.2×25.05 × 50G</td>
<td>5.45</td>
<td>44.1</td>
<td>3.64</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>45.0×25.02 × 50G</td>
<td>3.55</td>
<td>45.1</td>
<td>3.60</td>
<td>B型モデルに用いた</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.0×25.02 × 50G</td>
<td>3.50</td>
<td>45.2</td>
<td>3.64</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>45.0×25.12 × 50G</td>
<td>3.43</td>
<td>45.0</td>
<td>3.58</td>
<td>C型モデルに用いた</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.0×25.06 × 50G</td>
<td>3.55</td>
<td>44.8</td>
<td>3.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>8.20×25.00 × 200</td>
<td>3.46</td>
<td>4.99</td>
<td>2.88</td>
<td>全モデルに共用した</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.22×25.00 × 200</td>
<td>3.54</td>
<td>5.01</td>
<td>2.77</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>E</td>
<td>11.82×24.90 × 200</td>
<td>2.79</td>
<td>4.66</td>
<td>2.76</td>
<td>全モデルに共用した</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.82×24.96 × 200</td>
<td>2.82</td>
<td>4.60</td>
<td>2.78</td>
<td></td>
</tr>
</tbody>
</table>
図4.2.2 A型モデルの歪計測位置

図4.2.2（a） A型モデルの歪計測位置

図4.2.2（b） B型モデルの歪計測位置

図4.2.2（c） C型モデルの歪計測位置
図 4.2.3 (a) ダンネージ厚さ10 mm のときの荷重変位曲線 (A型)

図 4.2.3 (b) ダンネージ厚さ30 mm のときの荷重変位曲線 (A型)
図4.2.4(a) A型モデルのウェブ接部の荷重-歪曲線
（スパン=1 m）
図4.2.4(b) B型モデルのウェブ接部の荷重-歪曲線
（スパン=1 m）
図4.2.4(c) C型モデルのウェブ接部の荷重-歪曲線
（スパン=15 m）
5. スチールコイル搭載時におけるダンネージの挙動及び荷重分布

5.1 はじめに

船体にスチールコイルを搭載する場合、木製ダンネージを敷き、その上にスチールコイルを搭載する。したがってスチールコイルに対する船体変形を検討する場合には、ダンネージの挙動を明らかにし、それがスチールコイルの荷重をどのように船体に伝達するか、正確に把握しなければならない。本研究において、これを明らかにするべく計算を行なった。

第1段落として、接触問題を扱うFEMプログラムにより、スチールコイルとダンネージの接触部、ダンネージの変形、ダンネージ内の荷重分布等を正確に計算したが、この結果より、スチールコイルに変形はなく、ダンネージはスチールコイルのまわりの形で変形を受けること。ダンネージ内での荷重の水平方向の分散はあまり見られないことが明らかになり、実船（内底板上）の荷重分布はダンネージを単にパネとした簡単な計算で、十分正確に求められることが明らかとなった。

第2段落として、上記結果より簡易計算法を確立し、ダンネージの物性（荷重-変形の関係）、ダンネージの板厚スチールコイルの重量、個数等が、荷重分布形状にどのような影響を与えるか計算を行い、検討した。

以下に、これらの検討結果を報告する。

5.2 FEM計算によるスチールコイル、ダンネージの挙動と荷重分布の検討

川崎重工業が開発した接触問題解析用FEM Program "CONTAC"を用いて、スチールコイル搭載時のスチールコイルとダンネージの挙動を検討した。

5.2.1 解析対象

解析の対象としたスチールコイル、ダンネージは標準的なものを考えて次の通りとした。

(i) スチールコイル

(a) 形状 外径 D = 1500 mm
内径 D0 = 750 mm
巾 B = 1500 mm
重さ W = 15 ton

(b) 材料 等方性の弾性体とする。

(1) ヤング率 スチールコイルの剛性は明らかでないため、ヤング率を21×10^4 Kgf/㎟、1.05×10^4 Kgf/㎟の2種で考慮する。

(2) ダンネージ

次のもののが2条件含まれるとする。

(a) 形状 巾 w = 130 mm
厚さ t = 30 mm

(b) 材料 等方性の弾性体とする。（弾性は考えない。）

(1) ヤング率 112 Kgf/㎟

この値は川崎重工が過去に行なった実験に基づくもので、気乾・室温状態で木口の木目角45°（図5.2.1）の条件で求めた、未松の弾性域での圧縮剛性の値である。

(ii) ポアソン比 0.3と仮定する。
5.2.2 計算モデル

内底板の橋脚は無視して、これを剛と考え、この剛な支持台の上にスチールコイルがダンネージを介して置かれて
いる場合を考える。

解析対象としては図5.2.2に示すように、S、S'に対する対象性を考え、図中に斜線で示した範囲を取り出して解
析対象とした。境界条件として、ダンネージのS、S'上の点で横方向変位を、また rigid とした支持台との接触面
で上下方向変位を拘束した。

ダンネージは図5.2.3に示す如くモデル化し、単位面を取り出して平面応力問題として解析した。この時、ダンネ
ージの巾を拡げた分、次式のようにダンネージのヤング率を減じた。

\[E'd' = E'd \times \frac{2b}{B} \] (5.2.1)

ここで、E'd'：理想化したダンネージのヤング率

E'd : 実際のダンネージのヤング率

計算に用いたモデルの要素分割、境界条件を図5.2.4に示す。

5.2.3 荷重条件

荷重としては、ここではスチールコイルの自重のみを考え、船舶運動による加速度は考えない。また、横のスチー
ルコイルとの力のやりとりはないとする。スチールコイル重量による荷重としてスチールコイルが1段積の場合と2
段積の場合の二種を考える。2段積を考慮した計算では、上段のスチールコイルの荷重は図5.2.5に示す如く、下段の
コイルとの接触において集中荷重として下段のコイルに伝わるとして、解析対象は下段のコイルのみとした。この時
、上段のコイルと下段のコイルとの間の接点にはマッサス力は働かないものとする。

5.2.4 計算ケース

計算は5.2.2、5.2.3に示した計算モデル、荷重条件で、スチールコイルのヤング率、積付状態（1段積み or 2段
積み）を変えて、次の3ケースについて行った。

CASE I-A
スチールコイルのヤング率 \(\frac{E_{sc}}{E} = 2.1 \times 10^4 \) Kgf/㎟
積付状態 1段積み

CASE I-B
スチールコイルのヤング率 \(\frac{E_{sc}}{E} = 105 \times 10^4 \) Kgf/㎟
積付状態 1段積み

CASE II-A
スチールコイルのヤング率 \(\frac{E_{sc}}{E} = 2.1 \times 10^4 \) Kgf/㎟
積付状態 2段積み

5.2.5 計算結果

(1) スチールコイルとダンネージの接触状態及び変形

各ケースのスチールコイルとダンネージの接触状態及びダンネージの変形を図5.2.6に示す。接触帯はCASE
I-A、CASE I-Bで全帯で約110㎟、CASE II-Aで約130㎟となった。ダンネージを完全弾性とするすれば、
接触帯は荷重によってあまり変形しないといえる。スチールコイルは図5.2.7のQ点でダンネージ（厚さ30㎟）
へ、CASE I-A、CASE I-Bで約20㎟、CASE II-Aで約32㎟が付いている。ス
チールコイルはほとんど変形しない。図5.2.7のP点とQ点の相対変位はCASE I-Aで 2.5 \times 10^{-3} \) mm、
CASE I-Bで 3.1 \times 10^{-3} \) mm、CASE II-Aで 6.0 \times 10^{-3} \) mmである。

ダンネージの弾性がスチールコイルのそれに比べて非常に小さいため、スチールコイルはほとんど真円を保った
5.3 関易計算法の導入とこれによるダンネージの挙動、荷重分布の検討
5.2 で FEM を用いて計算した結果、スチールコイルはほとんど変形せず、またダンネージ内での荷重の水平方向の分担はほとんどないことが判った。このことから、荷重分布を計算する際に、ダンネージを図 5.3.1 に示すような
バネ支持体と考え、スチールコイルを rigid と仮定して、ダンネージはスチールコイルの形そのままの変形を受け
けるものとして取り扱う簡易計算が可能である。本節で、簡易計算法を導入し、これによりダンネージを完全弾性と
した場合及びダンネージの塑性化を考慮した場合の荷重分布を計算した。

5.3.1 ダンネージを完全弾性とした場合
ダンネージをバネ支持体とした時のバネ定数 K は次式で定義される。

$$K = E_d/\lambda_e$$ \hspace{1cm} (5.3.1)

図 5.3.1 に示すように、中心でのスチールコイルのくい込み量を A とすると、中心から x 離れた点でのくい込
み量 Z 及びスチールコイルとダンネージの接触面 C はそれぞれ、A とスチールコイルの外半径 r ($= D/2$)
の関数として次式で表される。

$$Z = A - r + \sqrt{r^2 - A^2}$$ \hspace{1cm} (5.3.2)

$$C = 2 \cdot \sqrt{2rh - A^2}$$ \hspace{1cm} (5.3.3)

支持反力（バネにより支持面に伝えられる力の合計） P_a は

$$P_a = 2 \cdot \int_0^C K \cdot Z(x) \cdot dx = 2 \cdot K \cdot \left(\frac{1}{4} (A - r) \cdot C + \frac{1}{2} r^2 \arcsin \frac{C}{r} \right)$$

となる。

この支持反力 P_a か、ダンネージ単位当たりにかかる荷重

$$w = \frac{W}{b \times n} \quad n: \text{ダンネージの本数}$$

に等しいとすれば、くい込み量 A が求められる。これより、中心から x 離れた点での分布荷重 $P(x)$ は

$$P(x) = K \cdot Z(x) = K \cdot (A - r + \sqrt{r^2 - x^2})$$ \hspace{1cm} (5.3.4)

として求められる。

接触問題解析用 FEM Program "CONTA0" を用いて計算した荷重分布と、上記より求めた荷重分布の比較を
図 5.3.2 に示す。両者はよく一致しており、この計算法の妥当なことを示している。

5.3.2 ダンネージの塑性化を考えた場合
これまでダンネージを完全弾性として計算したが、これより得られたダンネージの部、応力は材料の比例限をはる
かに超える結果となる。そこで、ダンネージの塑性化の影響を検討するため、これを非線形バネとして取扱うことに
より、その影響を検討した。
5.3.1 で述べた簡易計算法を、材料の構造性を考慮できるよう拡張して適用した。

(a) ダンネージの応力～応變関係

図 5.3.3 のように設定する。この時、ダンネージをパネ支持体とした時のパネ特性は図 5.3.4 のようになる。

ここで、

\[E : \text{ダンネージ材料のヤング率} \]

\[E_t, \; E_n \; \text{: 塩性域における弾性係数（} E_t は、大塩性域での材料の硬化を考えたものである。} \]

\[K = E / \ell d, \; K_t = E_t / \ell d, \; K_n = E_n / \ell d \]

\[Z_T = e_T \cdot \ell d, \; Z_n = e_n \cdot \ell d \]

\[P = K \cdot Z_T, \; P_n = P_T + K_t (Z_T - Z_n) \]

(b) くい込み圧 \(Z \) と分布係数（= パネの内力）\(P \) との関係

(i) \(0 \leq Z < Z_T \) の時

\[P = P_1 = K Z \]

(ii) \(Z_T \leq Z < Z_n \) の時

\[P \geq P_2 = P_T + K_t (Z - Z_T) \]

(iii) \(Z_n \leq Z \leq Z_n \) の時

\[P = P_3 = P_T + K_t (Z - Z_n) \]

(c) くい込み圧が \(Z_T, \; Z_n \) となる \(x_T, \; x_n \) はそれぞれ

\[x_T = \sqrt{r^2 - (T - H + Z_T)^2} \]

\[x_n = \sqrt{r^2 - (T - H + Z_n)^2} \]

(d) 以上よりダンネージの単位荷重（図 5.3.5 参照）当りの支持反力 \(P_n \) は

(i) \(0 \leq H \leq Z_T \) の時

\[P_n = 2 \times \int_0^{x_T} P_1 d x = 2 \times \int_0^{\sqrt{2 \ell H - H^2}} \left\{ 2 K \left(H - r \right) \sqrt{2 \ell H - H^2} + r^2 \arcsin \left(\sqrt{2 \ell H - H^2 / r} \right) \right\} \]

(ii) \(Z_T \leq H \leq Z_n \) の時

\[P_n = 2 \times \left\{ \int_0^{x_T} P_2 d x + \int_0^{x_T} P_1 d x \right\} + \int_0^{x_T} P_1 d x \]

\[= 2 \times \left\{ \int_0^{x_T} (P_T - K_t Z_T + K_t Z_T) d x + \int_0^{x_T} \sqrt{2 \ell H - H^2} K Z d x \right\} \]

\[= 2 \times \left\{ \left[(K - K_t) Z_T \cdot x_T + (K_t - K) \left\{ (H - r) x_T + \frac{1}{2} x_T \sqrt{r^2 - x_T^2} \right\} - \frac{1}{2} r^2 \arcsin \left(\frac{x_T}{r} \right) \right] + K \left(\frac{1}{2} (H - r) \sqrt{2 \ell H - H^2} + \frac{1}{2} r^2 \right) \right\} \]

(iii) \(Z_n \leq H \leq \ell d \) の時

\[P_n = 2 \times \left\{ \int_0^{x_n} P_2 d x + \int_0^{x_n} P_2 d x + \int_0^{x_n} P_1 d x \right\} \]

\[= 2 \times \left\{ \int_0^{x_n} (P_T - K_t Z_n + K_t Z_n) d x + \int_0^{x_n} (P_T - K_t Z_n + K_t Z_n) d x \right\} \]

\[= 2 \times \left\{ \left[(K - K_t) Z_n \cdot x_n + (K - K_t) Z_n \cdot x_n + (K - K_t) \cdot \left\{ (H - r) x_n + \frac{1}{2} x_n \sqrt{r^2 - x_n^2} + \frac{1}{2} r^2 \arcsin \left(\frac{x_n}{r} \right) \right\} \right] \right\} + \]
\[
K_1 - K \cdot \left\{ (h - \tau) x \sqrt{\frac{1}{2}} \sqrt{x^2 - y^2} + \frac{1}{2} r^2 \sin \left(\frac{2 \pi r}{h} \right) \right\} + \\
K \left\{ \frac{1}{2} (h - \tau) \sqrt{2 rh - h^2} + \frac{1}{2} r^2 \sin \left(\frac{\sqrt{2 rh - h^2}}{h} \right) \right\} \quad \cdots (5.512)
\]

で変わされる。

(e) 以上に示したように、支持反力 \(P_\alpha \) は \(h \) の関数として変わる。これにより \(h \) は 5.5.1 の場合と同様に、

\[
P_\alpha (h) = w = \frac{W}{P_d \cdot n} \quad \cdots \cdots \cdots (5.513)
\]

を解くことによって求められる。この \(h \) の値を式 (5.5.2)、(5.5.5)、(5.5.6)、(5.5.7) に代入することにより、分布荷重 \(P_\alpha \) が求められる。

(2) 計算モデル及び計算ケース

材料の応力 — 歪関係を図 5.3.6 に示すように 4 TYPES 設定して、ダンネージをそれぞれの TYPE に応じたパネ特性をもつ線形・非線形パネ支持体として計算した。

ここで、

TYPE A は完全弾性と仮定したものの、

TYPE B は弾塑性であって、本ケースのようにダンネージの一部だけが圧縮される時には、歪の大きくなる部分で材料が破壊せずに、周囲の拘束のために硬化する可能性があることを考慮して、ある歪を超えると

Tangent Modulus が大きくなると仮定したものを。

TYPE C は弾塑性で Tangent Modulus を 1 種と仮定したもの。

TYPE D は完全弾性と仮定したもの、である。

(a) 計算モデル

(i) スチールコイル (Rigid を円筒とする)

外 径 \(D = 1500 \text{ mm} \)

内 径 \(B = 1500 \text{ mm} \)

厚さ \(W = 15 \text{ ton} \)

(ii) ダンネージ (パネ支持体)

厚さ \(t \) と \(d \) と

このダンネージを 2 条数用にすることで。

計算に用いた材料定数を応力 — 歪関係の各 TYPES 別に表 5.3.1 に示す。

ここで用いた各材料定数は川崎重工が過去に行なった実験のうち、木製 (木枠の木目角 45°) に対するもののが実験結果（図 5.5.7 に示す）から求めたものである。ただし, \(E \), \(n \) の値は、木材の変形域での硬化の資料がないため、適当に設定したものである。

(b) 計算ケース

スチールコイルが 1 段結、2 段結の各組付状態につき、ダンネージ材料の応力 — 歪関係を上述のように 4 TYPES 考えて計 8 ケースについて計算した。

各ケースの組付状態、応力 — 歪関係を表 5.3.2 に示す。

(3) 計算結果

各ケースでのくい込み深さ \(h \), 接触巾 (くい込み巾) \(C \), 最大圧力 \(P_{\max} \) を表 5.3.3 に示す。
5.4 荷重分布に対するダンネージの圧縮剛性、板厚及びスチールコイルの径、重量の影響

ここでは、荷重分布の形状、分布巾に対する
(a) ダンネージの圧縮剛性
(b) ダンネージの板厚
(c) スチールコイルの重量
(d) スチールコイルの径

の影響を検討するため、(a)～(d)の各々のパラメータを変えた場合に荷重分布の形状、分布巾がどう変わるかを調べた。

5.4.1 計算法および計算ケース

計算法は5.3.2で示した通りである。計算は表5.4.1に示すケースを基本ケースとして、それから上記(a)～(d)のパラメータを各々単独に変えて計算した。この基本ケースは5.3.3の計算ケースのうちのCASE 1-B（材料の応力－歪関係について線形化及び大歪域での硬化を考慮、損付として外径1500mm、重量15tonのスチールコイルの1段集中考慮したもの）と同じである。

各ケースの呼称と、そこで基本ケースのものから変更したパラメータを表5.4.2に示す。また基本ケース及びCASE B-1、CASE B-2で仮定したダンネージ材料の応力－歪関係を図5.4.4に示す。

ここで、基本ケースで用いた応力－歪関係は米松の架空状態で木口の木目角が45°の場合を想定したものである。これに対して、CASE B-1、CASE B-2は木目角が90°、0°の場合を想定したものである。木目角が90°及び0°の場合について川崎重工が過去に行なった実験の結果を図5.4.2、図5.4.5に示す。また同図中に各ケースで仮定した応力－歪関係を共に示す。木目角の変化に伴うヤング率の変化を図5.4.4に示す。

5.4.2 計算結果

(1) ダンネージの圧縮剛性の影響

基本ケース及びCASE B-1、CASE B-2での荷重分布図5.4.5に示す。分布形状は3ケース共、一様分布に近いが、CASE B-1、CASE B-2の場合は比例限応力が基本ケースに比べて高い（17-19倍）ため、平均分布荷重は大きくなり、接触巾（荷重分布巾）は基本ケースに比べて約65%となっている。

CASE B-2のヤング率はCASE B-1のそれと比べて35％大きいが、比例限応力が約10％しか変わらないため、荷重分布にはあまり差がない。

(2) ダンネージの板厚の影響

基本ケース（td＝30mm）及び、それからダンネージの板厚tdを20mm、40mm、50mmに変えた時の荷重分布の変化を図5.4.6に示す。板厚が20mm、40mm、50mmの時の接触巾（荷重分布巾）は各々159mm、180mm、197mm、207mmとなる。

(3) スチールコイルの重量の影響

基本ケース（W＝15ton）及びそれからスチールコイルの重量Wを10ton、20ton、30tonに変えた時の荷重分布の変化を図5.4.7に示す。同図に示されるように、重量が大きくなるにつれて接触巾（荷重分布巾）の増加方は小さくなる。これは大歪域ではダンネージ材料が硬化すると仮定した結果、重量の大きなケースではこの影響が大きく現われるためと考えられる。

スチールコイルの重量が10ton、15ton、20ton、30tonの時の荷重分布巾（接触巾）は各々146mm、180mm、
200mm、228mmである。平均分布荷重は図中に示すように、スチールコイル重量の増加に対して一定に増加するような傾向となった。

(4) スチールコイルの径の影響

基本ケース（D = 1500mm）及びそれからスチールコイルの外径Dを1000mm、2000mm、2500mmに変化させた時の荷重分布の変化を図5.4.4に示す。

スチールコイルの外径が1000mm、1500mm、2000mm、2500mmの時の接触圧（荷重分布）は各々159mm、180mm、197mm、207mmとなる。

5.5 考察

スチールコイル搭載時のダンネージの挙動、荷重分布を検討した結果、以下のことが明らかになった。

(1) スチールコイルはほとんど変形せずダンネージに芯込み、また、ダンネージ内で水平方向の荷重の分散は少ない。従ってスチールコイルをrigidな円筒とし、ダンネージを単純パネ支持体とした簡単計算が可能である。

(2) スチールコイルの弾性の影響は少ない。スチールコイルのヤング率をsolidのスチールと同じ値としたもの、及びその半分としたもので内底板上の荷重分布には全く差がない。ヤング率が半分となったものでも十分関係である。

(3) ダンネージの塑性化を考えると荷重分布は一様分布に近くなる。

(4) 荷重分布の状態はダンネージの圧縮剛性により大きく変わる。

(5) ダンネージの被覆を厚くすれば、荷重分布は塗られた被覆の厚さに依存し、それらは小さい。

(6) スチールコイルの径の大きさが荷重分布に与える影響は小さい。

以上の計算結果より、スチールコイル搭載時の内底板上の荷重分布の様相、これに与える各因子の影響が明らかになったので、次年度、これらの結果を使用し、船級試験計算のための基準が検討される予定である。

なお、本文中にも示したように、ダンネージの弾性域における変性には不明確な点も多いので、4章の木材の圧縮実験などをもとに、さらに検討される予定である。
図5.2.1 木目角
図5.2.2 解析対象
図5.2.3 ダンネージのモデル化
図5.2.5 2段階時の荷重
図5.2.7 本文中で変位量を示す点
図 5.2.4 要素分割および境界条件
図5.2.6 ダンネージの変形
スチールコイルとの接触状態

図5.2.8 内底板上の荷重分布

図5.2.9 ダンネージの板厚方向変形 | の板厚方向分布
（CASE I-A と CASE II-A について示す。）
(CASE I-A と CASE I-B には全く差はない。)
図 5.3.1 簡易計算でのダンネージのモデル化

図 5.3.3 ダンネージの応力 - 空間関係

図 5.3.5

図 5.3.6 計算に用いた応力 - 空間関係の各 TYPE

図 5.3.2 簡易計算法と FEM により求めた内底板上荷重分布の比較
図5.3.7 米松圧縮時のσ-ε CURVE（実験データ及びその理想化）

図5.3.8 荷重分布（1段増）

図5.3.9 荷重分布（2段増）
図 5.4.1 各ケースでのダンネージ材料の応力 - 異相図

図 5.4.2 米松の圧縮剛性実験結果（木目角 90°）

図 5.4.3 米松の圧縮剛性実験結果（木目角 0°）

図 5.4.4 木目角の変化によるヤング率の変化

図 5.4.5 ダンネージの圧縮剛性の影響
図 5.4.6 ダンネージの板厚の影響

図 5.4.7 スチールコイルの重量の影響

図 5.4.8 スチールコイルの径の影響
表 5.3.1 各応力-歪関係 TYPE の材料定数

<table>
<thead>
<tr>
<th>応力-歪関係</th>
<th>E (Kg/㎟)</th>
<th>ε1 (Kg/㎟)</th>
<th>ε2 (Kg/㎟)</th>
<th>ε1 (%)</th>
<th>ε2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE A</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>TYPE B</td>
<td>112</td>
<td>0.7</td>
<td>5.0</td>
<td>2.1</td>
<td>15.0</td>
</tr>
<tr>
<td>TYPE C</td>
<td>112</td>
<td>0.7</td>
<td>0.7</td>
<td>2.1</td>
<td>—</td>
</tr>
<tr>
<td>TYPE D</td>
<td>112</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>—</td>
</tr>
</tbody>
</table>

表 5.3.2 各ケースでの積付状態、応力-歪関係

<table>
<thead>
<tr>
<th>CASE</th>
<th>積付</th>
<th>応力-歪関係</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - A</td>
<td>1段</td>
<td>TYPE A</td>
<td>完全弾性</td>
</tr>
<tr>
<td>I - B</td>
<td>1段</td>
<td>TYPE B</td>
<td>Tangent Modulus 2種</td>
</tr>
<tr>
<td>I - C</td>
<td>1段</td>
<td>TYPE C</td>
<td>2種</td>
</tr>
<tr>
<td>I - D</td>
<td>1段</td>
<td>TYPE D</td>
<td>完全弾性</td>
</tr>
<tr>
<td>II - A</td>
<td>2段</td>
<td>TYPE A</td>
<td>完全弾性</td>
</tr>
<tr>
<td>II - B</td>
<td>2段</td>
<td>TYPE B</td>
<td>Tangent Modulus 2種</td>
</tr>
<tr>
<td>II - C</td>
<td>2段</td>
<td>TYPE C</td>
<td>2種</td>
</tr>
<tr>
<td>II - D</td>
<td>2段</td>
<td>TYPE D</td>
<td>完全弾性</td>
</tr>
</tbody>
</table>

表 5.3.3 計算結果

<table>
<thead>
<tr>
<th>CASE</th>
<th>くい込み深さ A (㎜)</th>
<th>接触圧 C (㎜)</th>
<th>最大圧力 Fmax (Kg/㎟)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - A</td>
<td>2.08</td>
<td>111</td>
<td>0.75</td>
</tr>
<tr>
<td>I - B</td>
<td>5.45</td>
<td>181</td>
<td>0.421</td>
</tr>
<tr>
<td>I - C</td>
<td>5.92</td>
<td>188</td>
<td>0.559</td>
</tr>
<tr>
<td>I - D</td>
<td>10.4</td>
<td>249</td>
<td>0.235</td>
</tr>
<tr>
<td>II - A</td>
<td>3.30</td>
<td>141</td>
<td>1.23</td>
</tr>
<tr>
<td>II - B</td>
<td>8.75</td>
<td>229</td>
<td>0.751</td>
</tr>
<tr>
<td>II - C</td>
<td>12.8</td>
<td>276</td>
<td>0.520</td>
</tr>
<tr>
<td>II - D</td>
<td>41.5</td>
<td>500</td>
<td>1.59</td>
</tr>
</tbody>
</table>

表 5.4.1 basic case

<table>
<thead>
<tr>
<th></th>
<th>112 Kg/㎟</th>
</tr>
</thead>
<tbody>
<tr>
<td>ダンネージ材料のヤング率 E</td>
<td>112 Kg/㎟</td>
</tr>
<tr>
<td>ダンネージ材料の塑性域における Tangent Modulus E1</td>
<td>0.7 Kg/㎟</td>
</tr>
<tr>
<td>ダンネージ材料が塑性域で硬化する時の Tangent Modulus E2</td>
<td>5.0 Kg/㎟</td>
</tr>
<tr>
<td>ダンネージ材料の線状変 εY1</td>
<td>21 %</td>
</tr>
<tr>
<td>ダンネージ材料が塑性域で硬化を始める時の変 εY2</td>
<td>150 %</td>
</tr>
<tr>
<td>ダンネージの板厚 t d</td>
<td>30 ㎜</td>
</tr>
<tr>
<td>ダンネージの板巾 b d</td>
<td>130 ㎜</td>
</tr>
<tr>
<td>ダンネージの本数 n</td>
<td>2 本</td>
</tr>
<tr>
<td>スチールスプールの径径 W</td>
<td>15 ㎜</td>
</tr>
</tbody>
</table>

この外径 D | 1500 ㎜ |
表 5.4.2 計算ケース

<table>
<thead>
<tr>
<th>CASE</th>
<th>材質</th>
<th>E</th>
<th>ξ_{1}</th>
<th>ξ_{2}</th>
<th>ε_{Y1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE E-1 (木目角90°)</td>
<td>E = 30,</td>
<td>2</td>
<td>6 (MPa/m)</td>
<td>15 %</td>
<td></td>
</tr>
<tr>
<td>CASE E-2 (木目角0°)</td>
<td>E = 40,</td>
<td>2</td>
<td>6</td>
<td>10 %</td>
<td></td>
</tr>
<tr>
<td>CASE T-1</td>
<td>$\ell_{d} = 20$</td>
<td>(mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASE T-2</td>
<td>$\ell_{d} = 50$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASE T-3</td>
<td>$\ell_{d} = 70$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASE W-1</td>
<td>$W = 10$</td>
<td>(tn)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASE W-2</td>
<td>$W = 20$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASE W-3</td>
<td>$W = 30$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASE D-1</td>
<td>$D = 1000$</td>
<td>(mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASE D-2</td>
<td>$D = 2000$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASE D-3</td>
<td>$D = 2500$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（basic case から各々のパラメータの値を上記のように変える。）
6. パネルの強度

6.1 パネルの塑性崩壊

図6.1.1に示す様に、曲げモーメントのみで塑性崩壊が生ずると考え、その崩壊形式がよく知られている屋根型構造の場合について検討する。

矩形板の端の固着条件としては、
1) 周辺単純支持
2) 長辺支持、短辺固定
3) 周辺固定

の3種類について考え、その塑性崩壊型式が図6.1.2に示すものとなったときの、内力による仕事Uおよび外力による仕事Wを求めるとき、6.1.1の如くとなる。

よって塑性崩壊荷重PはU=Wより求められ、また実荷重をPactとするとき、安全係数αは

\[\alpha = \frac{P}{P_{act}} \]

として求められる。

ここで数値計算の一例として、両端を支点のフロアスペースを1700mm、ロングスペースを850mmとし、端に長さ1500mm、重量15kgのスチールコイルが長辺方向に2段積まれている場合の内力板をとり出してみると。但し、この時板体の変形等による動的加速度として0.5Gを考慮する。

図6.1.3は荷重幅dを85mmとし、中央塑性関節線Cを120mmとしたとき、板厚tをパラメータとしたときの安全係数の変化を示している。

図6.1.4および図6.1.5は中央塑性関節線Cをパラメータとしたときの安全係数の変化を示している。

図6.1.6は荷重幅dをパラメータとしたときの安全係数の変化を示している。

以上の結果から、

(Ⅰ) 中央関節線Cを大きくする程、安全係数は急激に上昇する。

(Ⅱ) 短辺支持、短辺固定の場合の安全係数は短辺支持したときの安全係数に対して、中央関節線Cを大きくすると、傾向を示す傾向にある。

(Ⅲ) 荷重幅dを大きくする程、安全係数は増加の傾向にあるが、その効果はあまり大きくないようである。
<table>
<thead>
<tr>
<th>内力による仕事</th>
<th>四辺支持</th>
<th>$4 \left{ \tan \theta + \frac{1}{\tan \theta} + \frac{c}{b} \right} M_r \delta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 辺支持 b 辺固定</td>
<td>$4 \left{ \tan \theta + \frac{2}{\tan \theta} + \frac{c}{b} \right} M_r \delta$</td>
<td></td>
</tr>
<tr>
<td>四辺固定</td>
<td>$4 \left{ \tan \theta + \frac{2}{\tan \theta} + \frac{a+c}{b} \right} M_r \delta$</td>
<td></td>
</tr>
<tr>
<td>外力による仕事</td>
<td>$W = P \left(1 - \frac{d}{2b} \right) \delta$</td>
<td></td>
</tr>
</tbody>
</table>

図 6.1.1

1) 四辺支持 2) a 辺支持、b 辺固定 3) 四辺固定

図 6.1.2
6.2 パネルの弾塑性解析（FEMによる解析例）

6.2.1 はじめに

ステーロコイル積層の内板板について、有限要素法による弾塑性計算を行なう。ダンネージの受圧荷を60MN、120MN、240MNと変えて、受圧荷の大きさが板パネルの強度に影響するか検討した。

また、受圧荷を考慮した崩壊荷重の近似式を提案し、残留値との対応を得た。

6.2.2 解析対象

解析は、中型積層物の内板板（LONGL SPACE = 790mm, L = 1200mm, t = 2.35mm）について行った。

図6.2.1に示すように、251ステーロコイルが1段積みに積まれ、ステーロコイル下には、3枚のダンネージ（90mm厚）が70mm間隔で設置されているものとする。

そして、ステーロコイルは長さ約1600mm、径約1900mmとした場合、1パネルに2枚のダンネージが存在することを想定し、対称性により、図6.2.1の白色で示した部分について計算を行なった。

6.2.3 計算

(1) 原素

計算はNASTRANで行ない、要素は、4方向面外曲げ要素（UQDPLT）を用いた。

(2) MESH分割

受圧荷によっては所々の変化があるが、受圧荷が120MNのときのMESH分割図を図6.2.2に示し、代表例とする。

(3) 荷重

荷重は、ダンネージの巾と受圧荷からなる矩形部分に一様に分布するものと仮定した。

(4) 境界条件

隅りのパネルに同様の荷重が加わる辺は固定とし、加わらない辺は単純支持とした。

対称性により、図6.2.3のように、軸回りの回転を拘束した。

(5) 計算方法

まず弾性計算を行ない、上の(4)で境界条件として、軸回りの回転を拘束している点で、曲げモーメントがMrに達した場合には、その点に弾性限界を生じたと考え、軸回りの回転の拘束をはずし、又、要素で弾性断面モーメントMaに達した要素は、曲げ剛性を1/100にした。

以上のよう設計をくり返し行ない、逐次足しあわせた。

ただし、

$$M_r = \sigma_y \frac{t^2}{4}$$

$$\sigma_y = 25 \text{ kN/m}^2$$

t = 板厚 2.35mm

である。

6.2.4 計算結果

断面の崩れ状況と荷重との対応は受圧荷が120MNのときを開例として説明すると次のようである。

まず荷重A（ダンネージ1枚当り1385t）で節点1にヒンジが生ずる。

荷重B（1859t）で節点2までヒンジが生じる。

荷重C（2568t）で節点3までヒンジが生じ、新たに、節点51にもヒンジが生ずる。又要素③、④も降伏する。

荷重D（3125t）では、ヒンジが節点41まで伸び、要素⑤が降伏する。

荷重E（3401t）でヒンジが節点51から61まで達した。

荷重F（3901t）で節点21にヒンジが生じ、要素②、④が降伏した。

以上の結果を図6.2.4に示す。
塑性域の範囲内では、荷重が増すにつれて、ヒンジが増えてゆくが、途中から荷重点付近の要素が破壊する。

なお、受圧面を60 mm、240 mmに変えた計算も行ない、比較検討すると、受圧面が大きい程、固定支持則の弾性ヒンジは生ずるのは遅いか、進展するのが早く、荷重点付近にヒンジが生じ、進展するのは遅くなることが判った。

図 6.2.5に荷重点（節点31）の荷重-変位図を示し、後に示す近似式との比較がされている。

6.2.6 討 言

図6.2.6に示すように2辺固定、2辺単純支持の端部形状を固定し、受圧面 a を考慮した弾性崩壊荷重を求めると、ダンネージ1条当りの弾性崩壊荷重 P_c の近似式は、

\[P_c = \frac{M_p}{(1 - \frac{2a}{\lambda})} \left(\frac{\ell_2}{\cos \theta} + \ell_3 + (\ell - \ell \tan \theta) \ell_3 \right) \]

ただし、

\[\ell_1 = \frac{1}{c} + \frac{1}{\ell_2} \]

\[\ell_2 = \frac{b}{2} \]

\[\ell_3 = \frac{b}{2} \]

\[\ell_4 = \frac{b}{2} \sin \theta \]

\[\ell_5 = \frac{b}{2} \cos \theta \]

である。

これによると、本例の場合、\(\delta = 1200 \text{mm} \), \(b = 790 \text{mm} \), \(t = 235 \text{mm} \) で、受圧面が

- 60 mm のとき \(P_c = 5402 \)
- 120 mm のとき \(P_c = 3595 \)
- 240 mm のとき \(P_c = 4050 \)

となる。

図6.2.7に崩壊荷重 P_c と受圧面の関係を示す。

図 6.2.5より、これらの崩壊荷重に対応する節点31の残留変位を求めると、それぞれ2.6 mm、3.4 mm、3.7 mmである。これを図 6.2.8に示す。

このことから、このパネルでは、2辺固定、2辺単純支持と仮定した崩壊荷重は、荷重点に残留変位2.6〜3.7 mmを生じさせるような荷重に対応している。

6.2.6 あ わ り

本報告では、中型貨物船の内底板パネルについて、スチールコイルの端部状態を考慮し、板の弾塑性有限要素法計算を行った。

その結果と弾塑性設計手法による近似式を比較して、次のように結論した。

(1) スチールコイル下のダンネージの受圧面が近似式による弾性崩壊荷重 P_c に与える影響は小さい。

(2) 近似式による弾性崩壊荷重での内底板の残留状態は受圧面60〜240 mmでは、約3 mm程度であった。
図6.2.1 荷重条件

図6.2.2 メッシュ分割図

図6.2.3 周辺条件

図6.2.4 型性化の進展状況

-58-
図6.2.5 荷重点の焼けと荷重曲線

図6.2.6 崩壊形式

図6.2.7 薬性崩壊荷重と受圧巾の関係
図6.2.8 受圧巾と残留焼けの関係
6.5 推定板の崩壊に対する慣力の影響

パネルの崩壊荷重は通常、慣力の影響を無視した弾性設計法により計算することが出来る。しかし、パネルの面内変位が拘束されている場合に変形が大きくなろうと慣力の影響を無視することが出来ない。

これまでの諸検討によるとロシノとフロアで担われた内底板パネルはロシ位置で単純支持、フロア位置で固定としてきしこくないと、および荷重はダンネージを介して集中的に作用することを考慮して図に示すように帯板について崩壊荷重に対する慣力の影響を検討した。

図を考慮した時の崩壊荷重の増加率は次のように表される。

(1) 日立の方法

(a) 慣力 $T \geq \frac{1}{2} E \varepsilon$ （すなわち、慣力が断面応力以下の場合同）

右図のような帯板で変形がδに達した時に塑性ヒンジが形成されて崩壊したとする。

変形がδに達するまでは弾性的に伸びていると考えられるから単位騒当の慣力 T は

$$T = \frac{1}{2} E \varepsilon \frac{m - \delta}{m} = \frac{1}{2} E \varepsilon \left(\frac{\delta}{\varepsilon} \right)^2$$

ここで、

$$\frac{\delta}{m} = \frac{1}{\sqrt{1 + (\delta/\varepsilon)^2}} = 1 - \frac{1}{2} \left(\frac{\delta}{\varepsilon} \right)^2$$

t = 板厚
E = ヤング率

従って、惯力による上向き力成分 F は

$$F = \frac{2 T}{m} \delta = T E \left(\frac{\delta}{\varepsilon} \right)^2 \left[1 - \frac{1}{2} \left(\frac{\delta}{\varepsilon} \right)^2 \right]$$

惯力が作用している時の全塑性モーメントは $M_F = \frac{\sigma T \delta^2}{4}$ 、 $T_F = \sigma T$ として次式で表われる。
\[M = M_T \left[1 - \left(\frac{T}{T_T} \right)^2 \right] = M_T \left[1 - \left(\frac{E}{2\sigma_T} \right)^2 \left(\frac{\delta}{\sigma} \right)^2 \right] \]

\[U = A M \delta \]

\[W = B \left(P - P_0 \right) \delta \]

ここで

\[A, B = \text{板の形態、周辺条件、荷重形式などにより定まる係数} \]

(3)式の \(M \) は(2)式に示されるように \(T \) の値、すなわち \(\left(\frac{\delta}{\sigma} \right) \) の値によって変化するからヒンテライン上の各点において異なる値となるが近似的にこれをすべての点で同一とみなす。

(3), (4)式に(1), (2)式を代入して導きると

\[P = \frac{A}{B} M_T \left[1 - \left(\frac{E}{2\sigma_T} \right)^2 \left(\frac{\delta}{\sigma} \right)^2 \right] + \frac{\ell E}{B} \left(\frac{\delta}{\sigma} \right)^3 \left[1 - \frac{1}{2} \left(\frac{\delta}{\sigma} \right)^2 \right] \]

膜圧の影響を考慮しない場合の増加荷重 \(P_0 \) は

\[P_0 = \frac{A}{B} M_T \]

であるから(6)式より膜圧の影響による増加荷重の増加率は

\[\frac{P - P_0}{P_0} = \frac{\ell E}{B} \left(\frac{\delta}{\sigma} \right)^3 \left[1 - \frac{1}{2} \left(\frac{\delta}{\sigma} \right)^2 \right] - \frac{\ell E}{B} \left(\frac{\delta}{\sigma} \right)^3 \left(\frac{\delta}{\sigma} \right)^2 \]

(6)

(b) 膜圧 \(T \equiv \ell \sigma_T \) （膜圧が降伏応力になった時）

\[T = \ell \sigma_T \] すなわち \(M = 0 \) となり膜圧の上向き成分は

\[P = 2 \ell \sigma_T \left(\frac{\delta}{\sigma} \right)^3 \left[1 - \frac{1}{2} \left(\frac{\delta}{\sigma} \right)^2 \right] \]

（7）

これが外力つまりあから \(P = P_0 \) となり增荷重の増加率は

\[\frac{P - P_0}{P_0} = 2 \ell \sigma_T \left(\frac{\delta}{\sigma} \right)^3 \left[1 - \frac{1}{2} \left(\frac{\delta}{\sigma} \right)^2 \right] - 1 \]

（8）

となる。

ここで、

\[P_0 = \text{膜圧を考慮しないときの増加荷重} \]

\[P = \text{膜圧を考慮したときの増加荷重} \]

\[\delta = \text{膜圧を考慮した増加時の値} \]

この計算による増加と増加荷重の増加率の関係を図 6.5.1 に示す。この関係によって増加荷重の増加率は増加荷重の増加率を決定することができる。

図中、鶴田氏の方法により計算した増加を同時に示した。

[鶴田氏の方法]

右図に示すような中央集中荷重を受ける帯板の

\[\sigma_0 \] については考えると中央点でのモーメント

\[\sigma \] のつりあい
\[\frac{P}{4} = \sigma_s b w m + m \] \hspace{1cm} (1)

弾性限内にあるとき

\[m = -D \left(\frac{d^2 w}{dx^2} \right) \] \hspace{1cm} (2)

中央に弾性限度が出るとき

\[m = \frac{1}{4} h^2 \sigma_y \left[1 - \left(\frac{\sigma_s}{\sigma_y} \right)^2 \right] = m_r \left[1 - \left(\frac{\sigma_s}{\sigma_y} \right)^2 \right] \] \hspace{1cm} (3)

弾性限界でのモーメントの連続条件より (2) = (3) として

\[m_r = \left[1 - \left(\frac{\sigma_s}{\sigma_y} \right)^2 \right] = D \left| \frac{d^2 w}{dx^2} \right|_{x = \frac{b}{2}} \] \hspace{1cm} (4)

膜力と破損の関係は

\[\frac{1}{2} \int_0^{\frac{b}{2}} \left(\frac{d w}{dx} \right)^2 dx - \frac{h}{2} \sigma_y \left(\frac{d w}{dx} \right) \left. \right|_{x = \frac{b}{2}} = \frac{1 - \nu^2}{E} \sigma_s \frac{b}{2} \] \hspace{1cm} (5)

仮定する破損形

(1) スパン中央のモーメントが \(m_r \) に達するまでの弾性域

\[W = 4 W_{m1} X \left(1 - X \right) \]

(2) モーメントが \(m_r \) になってから膜応力が \(\sigma_y \) になるまで

\[W = 4 W_{m1} X \left(1 - X \right) + 2 W_{m2} X \]

これらの破損形を (1)～(4) 式に代入することにより次のような荷重と破損の関係を得る。

(1) スパンの中央のモーメントが \(m_r \) に達するまでの弾性域

\[Q = \frac{8}{P} W_{m1} \left(1 - 4 W_{m1}^2 \right) \] \hspace{1cm} (6)

(2) スパン中央のモーメントが \(m_r \) になってから膜応力が \(\sigma_y \) になるまで

\[Q = 4 \mu \left(W_{m1} + W_{m2} \right) + \frac{8}{P} W_{m1} \] \hspace{1cm} (7)

(3) 膜応力が弾性膜破壊に入るとき

\[Q = 4 W_{m2} \] \hspace{1cm} (8)

ここで,

\[X = \frac{w}{b}, \quad \mu = \frac{\sigma_s}{\sigma_y}, \quad W = \frac{w}{h}, \quad Q = \frac{P b}{4}, \quad F = \frac{h b^2}{4 D} \sigma_y \]

この方法による板厚と破損荷重の増加率の関係を図 6.3.2 に示す。

以上の計算結果を比較すると鈴田氏の方法による計算値は日立の方法より大きくなる傾向であるが、通常用いられる内壁板の板厚（16mm〜20mm）の範囲では破損荷重の増加率は0.6〜10程度である。一方、これに対応する弾性破壊時の破壊は板厚の0.5〜0.7程度になるので破損荷重の増加率を設計的にどの程度にするか今後検討すべき問題である。

※ 鈴田他「水圧を受ける平板の強度」筑摩集 第109号

-62-
付録

熱冷延コイル積付保険標準

型鋼、厚板及びスラブの積付けにおいては、荷物重量を二重底構造材のうちでも比較的縦力なソリッドフロアーやガーダーにかけて積付けを行うことが多いが、コイル類では寸法、荷姿の点でかかる積付けは一般的に不可能であり、荷物重量はボットムダンネージを介して AT RANDOMな状態で内底板によって支持されると見做すべきである。従って、コイル積載重量限界は内底板強度を基準に決定されるべきである。

しかし、内底板の強度計算に適用される理論計算式はコイルの積付け実際に相当矛盾する点が認められ、四辺を支持或いは固定されたパネル中央部に部分荷重が集中する場合のパネル強度は、材料力学及び造船工学の分野でも判然とせず、ダンネージの荷重分散効果を含めて実験的に解明されない限り明確にし得ないことが判明した。

従って、以下「コイル積付け保険基準」に定めるダンネージの設置方法、本数をはじめ各項目は、今後実施される実験の解析結果が得られるまでの暫定的な標準として、従来の方法をそのまま取入れたものである。

従って、上記実験の解析結果が判明した時点において改訂される可能性が含まれていることに留意されべき。
<table>
<thead>
<tr>
<th>作業区分</th>
<th>記 事</th>
<th>解 釈</th>
<th>構 境</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 縦付け</td>
<td>コイルはコアを軸す尾端方向に置く船図記し、列間を若干空けて積付け、ワイヤースリングを引き抜くとき、小形傷の起きないよう注意する。（Fig 1）</td>
<td>品質保護、縦付け作業の安全性、及び船図保護のため、積設数制限をすることがある。</td>
<td></td>
</tr>
<tr>
<td>2. ダンネージ</td>
<td>(1) コイルのボットムダンネージの本数は、通常2本とする。ただし、長幅及び重量コイルの場合、3本とすることもある。（Fig 2）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) 楠ハクヘッド寄りの列およびオープンサイドの列の外側のボットムダンネージはその内側に比べ多少高くし、心もち傾斜をつける場合もある。（Fig 3）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. コイル積荷詰時に、移動の恐れがある場合は移動防止のためストッパーを入れ重めとする事がある。（Fig 4）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 重厚下サイドのフレーム、ダンクサイドブラケット、ボーバープレートなどの構造物は製品との直接接触を防ぐためにダンネージを当てる。（Fig 5）</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Fig 1](image1.png)

![Fig 2](image2.png)

![Fig 3](image3.png)

![Fig 4](image4.png)

![Fig 5](image5.png)
<table>
<thead>
<tr>
<th>作業区分</th>
<th>記</th>
<th>図</th>
<th>解</th>
<th>棟</th>
<th>要</th>
</tr>
</thead>
<tbody>
<tr>
<td>作業区分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>ショアリング</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>ショアリングは最上段のみ行なう。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>列間のチェックインは原則としてウィヤーラッシングを行なった部分のみ行なう。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>転換方向の本転転側とコイルの間、コイルとコイルとの間隔はチェックインを各コイルに2関所行なう。</td>
<td>(ローリング対策)</td>
<td>(Fig.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>図のような部分でコイルが大きく変化している場合でも、ウィヤーラッシングを行なった場合ショアリングは行わない。 (Fig.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>但し、先に述べた変動の恐れがある場合にはショアリングを行なう。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>ラッシング</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>ウィヤーラッシングは最上段のみ行なう。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>ウィヤーラッシングはオーリングラッシング又はグループラッシングとする。（Fig.7）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>数列以上切向する場合は原則として後口3列のみウィヤーラッシングとする。（Fig.8）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>オールオーバーに切向する場合は原則としてウィヤーラッシングは行わない。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>但し、Key Coilについては各列にウィヤーラッシングを図のように行なう。（Fig.9）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>コイルエッジの当て物は品質保護上必要の場合のみ施す。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>記号区分</td>
<td>事項</td>
<td>内容</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 鋼材</td>
<td></td>
<td>1. 通常コイルの箱根棟付とは原則として3段までとする。 (Fig 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. 大型コイルは下部に、小型コイルは上部にとし編立に変形させると考慮すること。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. 鋼線のコイルとコイルの接続には必ずシュリンクを施す。 (Fig 1, 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. ウィヤーを入する際、互いに接続した部分より接続した方へ水平に電圧を施す。鋼線アイブレートまたはコールに取付けバーケーブルにて施し、なお電圧周りの イーウにできるだけ無しバックヘッドへ施す。 (Fig 3, 4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. コイルが箱枠フレームまたは直接鋼線外板に当たる部分は必ずシュリングを施すこと。 (Fig 1, 2, 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Fig 1](image1.png)
![Fig 2](image2.png)

![Fig 3](image3.png)

![Fig 4](image4.png)
1. たてコイルの設けは原則として2段までとする。

2. 場所な部分は他の群を原則とする。（Fig 1）

3. 名内フレームなどに当たる部分は必ずダンページを当てる直接の接觸を防ぐこと。

4. 場所にはダンページを数かいない。（Fig 1）

5. テックング方法は台設をフープまたはワイヤーにてテックングを行なう。但し、ワイヤーの場合、直接コイルに接触するよりコイル側面にプロテクターを当てる（Fig 3.4）

6. 9～12個をまとめて大さわしを行なう。

7. コイルとコイルの間隔が特に大きい場合、ダンページ、くさびを使用し間隔をチェックする。ダンページ、くさびは破壊しくくさび使用のときはコイルエッジをいためない程度のものとする。（Fig 3.4）

8. 場所とたてコイルの間はダンページでショッピングを施す。（Fig 1.2）
大径鋼管の船積指針

1. 適用

この指針は直徑254mm（10'）以上で、直徑（D）／肉厚（t）が50以上の鋼管を船積積載する場合に適用される。

現在製造されているラインパイプで強度の面から船積方法が問題となるのは直徑（D）が254mm（10'）以上で直徑（D）／肉厚（t）が50以上の比較的薄い鋼管であることから上記のような適用範囲を設けた。

2. 船積方法

応力が一点支持（図（a））により許容値を越える場合、30'をなす三角形（図（c））あるいは合計断面の角材（図（d））で鋼管外周上2箇所あるいは3箇所を支持する。逆に歯方向に連続支持を考えれば、応力が許容値よりも非常に小さくなることもあるので断続支持も可能なようになる。

ストレートシーム鋼管の場合は、溶接ビード部を12時（または2時、4時、6時、8時、10時）から±15以内の位置を原則とする。

3. 静的応力の算定

船積時鋼管に生ずる最大の静的応力は船積方法に応じて次式によって求められる。但し以下に示すのは最下段鋼管が歯方向に連続支持であるから不連続の場合、別途係数を乗ずる。スパイラルパイプではすべての段数において不連続支持となっており別途係数を乗ずる。

\[\sigma_s = K \cdot \frac{(D - t)^2}{t} \cdot n \cdot 10^{-6} \] \hspace{1cm} (1)

\(\sigma_s \): 鋼管に生じる静的強度最大応力（kg/㎟）
\(D \): 鋼管の直径（㎟）
\(t \): 鋼管の肉厚（㎟）
\(n \): 積み段数
\(K \): 船積方法によって定数
この指針では船積荷重は同一径筒重で支持されると考えているので、リングの公式を用いて曲げモーメントを求める。荷重は上段と積み重ねられた鋼管の重量であるので比重を7.8として外径(D)と内径(d)と断面積(w)で荷重を表し、

\[\sigma_s = \frac{M}{W} \quad (W: \text{単位長当たりの断面係数}) \]

より応力を計算すれば

\[\sigma_s = K \cdot \frac{D - d}{D} \cdot \frac{t^2}{t} \cdot n \cdot 10^{-6} \]

が求められる。

4. 動的応力の算定

船積荷重時に生ずる動的応力は次式によって求められる。

\[\sigma_D = \alpha \cdot \sigma_s \quad (2) \]

\(\sigma_D \): 動的応力 (kgf/㎟)

\(\alpha \): 加速度(%)、船の長さにより表1のとおりとする。

表1. 船の長さと加速度

<table>
<thead>
<tr>
<th>船の長さ L(㎟)</th>
<th>120≦L<160</th>
<th>160≦L<180</th>
<th>180≦L<200</th>
<th>200≦L</th>
</tr>
</thead>
<tbody>
<tr>
<td>加速度(%) (\alpha)</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.25</td>
</tr>
</tbody>
</table>

船積荷重時に生ずる加速度は新日鐵、日本鋼管、住友金属工業等の各社が行った実験結果および次の資料から決定された。

(1) G. Aertssen

Laboring of Ships in Rough Seas with Special Emphasis on the Fast Ships SNAME

Diamond Jubilee International Meeting 6. 1968

(2) 航海中の加速度および横揺げ角測定に関する件

（船積小委員会配布資料）
5. 許容応力の算定

(1) 鋼管が永久変形を生じない条件

\[\sigma_T \leq \sigma_y \] \hspace{1cm} (3)

\[\sigma_T : 静的応力と動的応力の合成応力 \quad (kg/㎟) \]

\[\sigma_y : 鋼管の規格最小降伏点 \quad (kg/㎟) \]

式(2), (3)から

\[(1 + \alpha) \sigma_s \leq \sigma_y \] \hspace{1cm} (4)

(2) 鋼管が疲労破壊を生じない条件

耐久限度線図より

\[\frac{1}{2} \cdot \sigma_s + \alpha \cdot \sigma_y \leq \frac{1}{2} \cdot \sigma_y \] \hspace{1cm} (5)

表1, 式(4), 式(5)から鋼管が永久変形も疲労破壊も起きない条件、すなわち鋼管の許容応力は表2のとおりとなる。

表2. 船積荷重時の鋼管の許容応力

<table>
<thead>
<tr>
<th>船の長さL (m)</th>
<th>120 ≤ L < 160</th>
<th>160 ≤ L < 180</th>
<th>180 ≤ L < 200</th>
<th>200 ≤ L</th>
</tr>
</thead>
<tbody>
<tr>
<td>許容応力σn (kg/㎟)</td>
<td>σn ≤ 0.666 σy</td>
<td>σn ≤ 0.714 σy</td>
<td>σn ≤ 0.769 σy</td>
<td>σn ≤ 0.800 σy</td>
</tr>
</tbody>
</table>

疲労破壊を生じない条件は次の耐久限度線図を用いて求めた。

疲労破壊を生じない条件は次の耐久限度線図を用いて求めた。

変動荷重の下での応力パターンは次のとおりである。

\[\sigma_n = \sigma_s \] \hspace{1cm} (6)

6. 船積荷重の算定

船積荷重が一定の荷重棒で支えられている場合の船積荷重nは次式によって求められる。

\[n = p \times 10^4 \sigma_y \cdot \frac{t}{(D - t)^2} \]

\[n : 船積荷重 \]

\[\sigma_y : 規格最小降伏点 \quad (kg/㎟) \]

\[D : 外 径 \quad (㎝) \]

\[t : 肉 厚 \quad (㎝) \]

Pは船積荷重, 船の長さによって決まる定数で次のとおりである。なお断続支持の場合, 別途係数を乗じて荷重数を減ずる。
7. 共他（参考事項）

本文で示した式は最下段鋼管軸方向の支持が連続の場合である。

板を節約するため管軸方向に一定間隔で断続させてダンネリを使用した場合
当然許容積段数は少くなる。その関係を求めるため種々作業したが、指針として
はなお検討すべき点が残っている。

参考までにワーキンググループで討議した時の一例を示すと次の図のよう
になる。

この図の使用例

本文の式により許容積段数が9となったとする。中約100mmのダンネリを
1m間隔に置いてるとしたとηは約1.5となり積段数は6となる。
逆に考えると計算積段数が9の場合、実際には必要なく6段しか積まない
ときは全長に渡り板をしか必要なく1ピッチでしかよいこととなる。
不連続係数 η

$\eta = \frac{不連続面荷重}{連続線荷重}$

凡 例
1. 1219の ●
2. 1016の ○
3. 609の △

サフィックス
1. 新日鉄 (90mm)
2. 王金 (100mm)
3. 川 鉄 (1000mm)
4. NKK (100mm)