

3rd ASEF 2009, Shanghai, China

Maritime Regulation and Action from Industry

China Shipbuilding Information Center Yanqing Li

<u>3-4 December 2009</u>

Contents

- IMO Regulation Overview
- Shipbuilding Industry in face of Maritime Regulation
- Π
- Action from Shipbuilding Industry

I. IMO Regulation Overview

MSC Focus on Maritime Safety

MSC Focus on Maritime Safety

MEPC Focus on Maritime Environment Protection

CSIC MEPC Focus on Maritime Environment Protection

Harmful aquatic organisms in ballast water to prevent, minimize and ultimately eliminate the transfer of harmful aquatic organisms and pathogens through the control and management of ships' ballast water and sediments

MARINE EQUIPMENT

Prevention of air pollution from ships

Nitrogen Oxides (NOx):

Tier I, Tier II, Tier III

8

CSIC SC Stretches Even Further - DE

1) Revision of the code on alarms and indicator 2) Draft revised MODU Code 3) Measures to prevent accidents with lifeboats 4) Compatibility of life-saving appliances 5) Amendments to the guidelines for ships operating in arctic ice-covered waters 6) Guidelines for maintenance and repair of protective coatings 7) Cargo oil tank coating and corrosion protection

 Performance testing and approval standards for fire safety systems
 Fire resistance of ventilation ducts
 Measures to prevent fires in engine-rooms and cargo pump-rooms
 Fixed hydrocarbon gas detection systems on double-hull oil tankers <u>SC Stretches Even Further - BLG</u>

1) Development of guidelines and other documents for uniform implementation of the 2004 BWM Convention

2) Review of MARPOL ANNEX VI and the NOx

technical code

3) Evaluation of safety and pollution hazards of chemicals and preparation of consequential amendments

4) Development of provisions for gas-fuelled ships
5) Review of the recommendation for material safety data sheets for MARPOL ANNEX I cargoes and marine fuels

- 1) Routing of ships, ship reporting and related matters
- 2) Development of an e-navigation strategy
- 3) Evaluation of the use of ECDIS and ENC development
- 4) Revision of the performance standards for INS and IBS

II. Shipbuilding Industry in face of Maritime Regulation

Impact of Maritime Regulation on Shipbuilding Industry

GBS-- Ship Construction File

Structural strength

	General Design	Applied Rule (date & revision)	Applied design method	SCF-specific
1		Appl ed alternative to Kule	alternative to Kule and	Capacity Plan
	Deformation and Failure	Calc latiing conditions and	<pre>subject structure(s)</pre>	Loadir g Manual
2	Mdes	resu ts;	Allowable loading pattern	Trim & Stability Booklet
-	mado	Assumed loading conditions	Maximum allowable hull girder	Loadir; Instrument
	Ultimate	Oper tional ristrictions due to	pending moment and shear force	Instruction Manual
	Strength Safety Margins	operational Pstrictions due to strustural strengt OCUCC	laxunum allowable care IS	Operation and
3		Stre gth calculation results	density or storage factor	Maintenance
		Gros hull girder section modulus	Bulky output of strength	Manual 3
4		Minimum hull girder section mathematica		General
7		alon; the length of the ship to be		Arrang ment
			Plan showing highly stressed	Key Construction
		main ained throughout the ship's	areas prone to yielding and/or	Rudder and Rudder
		life	buckling	Stock
		Gros scantlings of structural	Structural drawings	Structural Details
		items	Rudder and Stern Frame	
		Net scantlings of structural items	Structural details of typical	
		Hull form	members	Production Plans
				Lines Plan IO

Lines Plan

Continuous review for the past experience in face of the new concept.

A series of shipbuilding technology including design, construction and marine equipment needs to be improved.

Broader industries besides shipbuilding will get involved.

Energy efficiency and environment protection should be taken into consideration at the meantime, which requires new ship type development instead of part update. Improvement of ships needs efforts from multi-industry

NYK Super Eco Ship 2030: a reduction of CO₂ by 69 percent per container carried

III. Action from Shipbuilding Industry

Shipping Industry Takes Proactive Role Auxiliary Dual / Multi The Danish Initiative Green Ship of the Future MCR Systems Certificatio n Turbo EGR systems Waste Heat charging with Recovery Automated variable Lab on a Systems Engine nozzle rings Ship Monitoring Optimized Scrubber **ING** Powered Control for Systems Fast Ferry Electronic Ship Cooling Performance Engine and Monitoring VTR of Silicone Air Cavity Innovative Forum of Anti-Fouling Systems Propeller Ship Officer Students Design Trim Weather Optimisation Routing 22

Shipping Industry Takes Proactive Role

CSIC

The Danish Initiative Green Ship of the Future

DNV Triple-E: Environmental & Energy Efficiency Rating Scheme

CCS: "Green Ship Plan"

Action from Shipbuilding Industry

The Shipbuilding Research Center of Japan: The main feature of the NOBS is a transversely ranked bottom-required to maintain a draught in order to sail safely without ballast water. The resulting decrease in displacement is compensated for by widening the breadth. Non-ballast water ship

Ballast-free ship

University of Michigan :Instead of hauling potentially contaminated water across the ocean, then dumping it in a Great Lakes port, a ballast-free ship would create a constant flow of local seawater through a network of large pipes, called trunks, that runs from the bow to the stern, below the waterline. Action from Shipbuilding Industry

Action from Shipbuilding Industry Finalizing amendments to the text of the draft SCF guideline, verification guidelines and SOLAS amendments (if necessary and possible).

Item 2

Drafting list of information to be included in the SCF on board and SCF Supplement ashore. This would be a comprehensive list including highly intellectual property sensitive information which shall be stored ashore.

Preparing a "standard" ranking of SCF information from intellectual property sensitivity point of view. It wa agreed that a complete ranking would not be necessary for the MSC 87 submission. Nevertheless, the industry should be able to develop a concept and provide concrete examples (either as part of the submission or as part of a separate info paper).

Developing an overall framework of the security system for SCF (hardware and software methods of protection).

Drafting "standard" procedures for access to SCF. Both ship owner experts and yard experts shall provide practical examples and the reasoning behind.

Designing a plan for archive centre(s) There can be many solutions. For instance, individual class might be interested in entering into contractual relationships for SCF Supplement storage purposes ISO/TC8 Links IMO and Industry

CSIC

ISO 28000: Security Management Systems for the Supply Chain

	Title	Status	
ISO 28000	00 Specification for security management systems for the supply chain		
ISO 28001	Security management systems for the supply chain- Best practices for implementing supply chain security- Assessments and plans- Requirements and guidance	Published	
ISO 28002	Resilience in the Supply Chain - Requirements with guidance for use	Under development	
ISO 28003	Security management systems for the supply chain- Requirements for bodies providing audit and certification of supply chain security management systems		
ISO 28004	Security management systems for the supply chain- Guidelines for the implementation of ISO 28000	Pub I i shed	
ISO 28005-1	005-1 Security management systems for the supply chain- Electronic port clearance (EPC)- Message structures		
ISO 28005-2	Security management systems for the supply chain- Electronic port clearance (EPC)-Core date elements	Under development	
ISO 20858	20858 Ships and marine technology - Maritime port facility security assessments and security plan development		

CSIC

ISO 30000: Ship Recycling Management Systems

	Title	Status
ISO 30000	Ship recycling management systems - Specifications for management systems for safe and environmentally sound ship recycling facilities	Pub I i shed
ISO 30001	Ship recycling management systems - Best practice for ship recycling facilities - Assessment and plans	Under development
ISO 30002	Ship recycling management systems - Guidelines for selection of ship recyclers (and pro forma contact)	Under development
ISO 30003	Ship recycling management systems - Requirements for bodies providing audit and certification of ship recycling management systems	Published
ISO 30004	Ship recycling management systems - Guidelines for implementing ISO 30000	Under development
ISO 30005	Ship recycling management systems - Information control for hazardous materials in the manufacturing chain of shipbuilding and ship operations	Under development
ISO 30006	Ship recycling management systems- Illustration of the location of hazardous materials onboard ships	Under development
ISO 30007	Ship recycling management systems- Guideline for measures to minimize asbestos emission and exposure at ship recycling	Under development
ISO 30008	Ships and marine technology - Large yachts - Ship recycling management systems - Yachts recycling	Under development

Environment Activities of ISO/TC8

CSIC

Ballast Water Management

CSIC

Outline of Hitachi ClearBallast

VLCC Ballast water capacity	Туре	Treatment rated capacity	Hour consumption	Power consumption	Energy consumption	Facility size
100000 m ³	1	200m³/h	500h	20 kw	10000 kwh	20 ft bulk containe r
100000 m ³	2	400m³/h	250h	40 kw	10000 kwh	40 ft bulk containe r
100000 m ³	3	800m³/h	125h	60 kw	7500 kwh	35 m ² Foot Print
100000 m ³	4	1, 200m³/h	83h	120 kw	9960 kwh	52 m ² Foot Print
100000 m ³	5	1, 600m³/h	63h	130 kw	8190kwh	69 m²Foot Print

Working Groups between ASEF meetings (basic platform)?

ISO/TC8 Ships and Marine Technology
Committee (cross industry platform)?

Committee for Expertise of Shipbuilding Specifics (CESS)?

Thank You for Your Attention !

Contact : lyq@shipol.com.cn