

on Regulation for

Ballast Water Treatment

General

• It is estimated that shipping transfers abt.<u>10</u> <u>billion tones</u> of ballast water each year around the world

•The invasion of foreign species through ship's ballast water is a worldwide economical and ecological threat

The IMO Convention

• The International Maritime Organization (IMO) and other international bodies to take action to address the transfer of harmful organisms by ship's ballast water.

• On February 13, 2004, IMO adopted a new convention (Control and Management of Ship's Ballast Water and Sediment) in which ballast water exchange and/or ballast water treatment will be required on all vessels

Ballast Water Management procedures

1. Ballast Water Exchange Standard (Regulation **D-1**)

- -- Tentative Measures until comply with D-2
- 2. Ballast Water Performance

(treatment) Standard

(Regulation D-2)--- Ballast Water

should be treated

-- Not come into force yet

At the moment most new ships are still following D-1 standard, but the space for installing B.W. treatment should be considered

Ballast Water Exchange (D-1 Standard)

1. Sequential method

--- 95% of Ballast water from ballast tank discharge to overboard then filling clean deep sea water to the tank one by one.

---Limited by ship's stability

---For some kinds of ship, this method can't be used, such as container vessel, multi-purpose vessel, RoRo vessel and PCTC vessel etc.

2. Flow through (Over flow) Method

---Pumping through at least 3 times clean deep sea water to replace ballast water in ballast tanks

---This technique is not effective in removing organisms from ballast water.

- There are some limitation in both methods
- It is therefore extremely important to develop the effective ballast water treatment systems as soon as possible, in order to replace Ballast Water Exchange (D-1)

Ballast Water Treatment (D-2 standard)

Ballast Water Performance Requirement

•Less than 10 viable organisms per cbm $>50\mu m$

•Less than 10 viable organisms per ml >10 μ m - <50 μ m

•Bacteria - Similar to existing bathing water

- ---Vibrio cholerae
- ---Escherichia coli
- ---Intestinal Enterococci

1 cfu/100ml 250 cfu/100ml 100 cfu/100ml

Ballast Water Treatment (D-2 standard)

- The technology for ballast water treatment
- 1. Mechanical treatment methods such as filtration and separation
- 2. Physical treatment methods
 - such as sterilization by ozone, inert gases, oxidation, ultra-violet light, electric currents and heat treatment
- 3. Chemical treatment methods such as adding biocides to ballast water to kill organisms
- 4. Various combinations of the above

PureBallast System

NEI

Gas Super-saturation

BOLLFILTER

Electrolysis/electrochlorination

Korea

Filtration + Ultraviolet irradiation

EcochlorTM System

Chlorination

Ballast Water Performance (D-2)

Application date of D-2

: BW exchange or Treatment (D-1 or D-2)

: BW Treatment D-2

Year of ship construct	Ballast Cap. (m3)	Ship Type/Approx. DWT	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
D 0 0 000	<1500	Tanker / DWT < 3400 Bulker / DWT < 4200 Gen Cargo/DWT < 4100										
Before 2009	≤1500 ≤5000	Tanker / 3400 <dwt<15000 Bulker/4200<dwt<14200 Gen Cargo/4100 <dwt<14000< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dwt<14000<></dwt<14200 </dwt<15000 										
	>5000	Tanker / DWT < 3400 Bulker / DWT < 4200 Gen Cargo/DWT < 4100										
In 2009	< 5000	Tanker / DWT < 3400 Bulker / DWT < 4200 Gen Cargo/DWT < 4100										
After 2009	< 5000	Tanker / DWT < 3400 Bulker / DWT < 4200 Gen Cargo/DWT < 4100										
Before 2012	≥ 5000	Tanker / DWT < 3400 Bulker / DWT < 4200 Gen Cargo/DWT < 4100										
In or after 2012	All	All										

Acc. to International Conventions, the application of D-2 come into force:

- 12 months after ratification by 30 States and Whose fleets not less than 35% of world merchant shipping tonnage.
- Now It is ratified by 18 States which occupies
 15.27% world shipping tonnage. So the application date will be delay about 2-3 years.
- Some Ship Owners have required to install the B.W.
 treatment system on the new ships

treatment for ship design

1. Up to now, more than 30 systems are developed or under development ---But only 6 systems have been Type approved by Administration/Class 2. Too many different kinds and different operation types of ballast water treatment systems and the less experience for using these equipments ----We don't know which one is the best

TYPE APPROVED TREATMENT SYSTEM

No	Maker	Country	Approval	Approved at	Approved date
1	NEI Treatment Systems LLC	USA	Type-approved	By Liberia thro'G8	17-10-2007
2	Alfa Laval Tumba AB	Norway	Type-approved	By DNV	27-06-2008
3	PERACLEAN Ocean	Germany	Type-approved	By Germany	10-06-2008
4	Techcross	Korea	Type-approved	By Republic of Korea	31-10-2008
5	Oceansaver AS	Norway	Type-approved	By DNV	17-04-2009
6	Hyde Marine Inc - Hyde Guardian	USA	Type-approved	By LR for UK-MCA thro'G8	29-04-2009

THE MAKER OF TREATMENT SYSTEM

No	Name	Operation Type
1	Alfa Laval Tumba ABNorway	Filtration + Ultraviolet irradiation + TiO ₂
2	ATG WillandUnited Kingdom	Filtration + Ultraviolet irradiation
3	Ecochlor IncUSA	Chlorination (Chlorine dioxide)
4	Electrichlor IncUSA	Filtration + Electrolysis/electrochlorination
5	Environmental Technologies IncUSA	Filtration + Ozonation + Ultrasound
6	GaussGermany	Filtration + Ultraviolet irradiation
7	GreenshipNetherlands	Hydrocyclone + electrolysis/electrochlorination
8	Hamann AGGermany	Hydrocyclone + Filtration +Peracetic acid
9	HitachiJapan	Filtration + Coagulant (with magnetic particles)
10	Hi Tech Marine Pty LtdAustralia	Heat
11a	Hyde Marine Inc -Hyde GuardianUSA	Filtration + Ultraviolet irradiation
11b	Hyde Marine Inc -Seakleen TM USA	Seakleen
12	JFE Engineering Corporation	Filtration + Chlorination +
	Japan	Residual Cl neutralisation + Cavitation
13	Marenco Technology Group IncUSA	Filtration + Ultraviolet irradiation
14	Mahle NFV GmbHGermany	Filtration + Ultraviolet irradiation
15	MH Systems IncUSA	Deoxygenation
16	Mitsui Engineering & ShipbuildingJapan	Ozonation + Cavitation

THE MAKER OF TREATMENT SYSTEM

	No	Name	Operation Type		
	17	NEI Treatment Systems LLCUSA	Deoxygenation + Cavitation		
	18	Nutech 03USA/Korea	a Ozonation		
	19	Oceansaver ASNorway	Deoxygenation + Cavitation		
	20	OptimarinNorway	Filtration +Ultraviolet irradiation		
	21	PanasiaKorea	Filtration +Ultraviolet irradiation +OH		
	22	QwaterUSA	Filtration +Ultrasound		
	23	Resource Ballast Technology	Filtration +Ozonation + Cavitation +		
		South Africa	Electrolysis/electrochlorination		
	24	RWO MarineGermany	Filtration +Electrolysis/electrochlorination		
	25	Severn Trent De NoraUSA	Electrolysis/electrochlorination		
			+Residual Cl neutralisation		
	26	SiemensUSA, UK, Germany	Filtration + Electrolysis/electrochlorination		
	27	TechcrossKorea/China	Electrolysis/electrochlorination		
	28	Toagosei GroupJapan	Filtration + Chlorination +Residual Cl		
			neutralisation		
Ī	29	Ferrate Treatment Technologies	Advanced oxidation (Fe ⁶⁺)		
	30	Sincerus	Electrolysis/electrochlorination		
ľ	31	Blue Ocean ShieldChina	Electrolysis/electrochlorination		
	32	Dalian UniversityChina	Advanced Oxidation		
	33	SUNRUIChina	Electrolysis/electrochlorination		

The problems of ballast water

treatment for ship design

3. Consideration of the treatment capacity and the size of equipment

--- Generally the engine room space is limited, the size of equipment is very important, especially for small vessel

4. More electric power consumption

--- Because of additional equipment such as back flushing pump, Disinfection-Unit, AOT Unit and other equipments etc.

5. High price

- --- The price of the new equipment is very high, because it takes huge money and time in research and development.
- --- After more and more BW treatment systems used in the ship
- building, the price will be reduced.

Example 1

19100DWT MULTI-PURPOSE VESSEL

PRINCIPAL PARTICULARS

Length overall abt. 166.00 m
Breadth 22.90 m
Depth 13.90 m
draught (Scantling) 9.50 m
Capacity of water ballast tanks 9650 m3
Application Date for D-2 standard 2017

It is Owner's requirement to install BW treatment system

Reason:

- The new regulation will be come into force in the future for all ships
 - ---It is easier to install the B.W. treatment system for new vessel than the existing ones
- The vessel will be navigated in the special area that is very dirty
 --- Where there are a lot of mud and sand in the ballast water as well as organisms
 - --- After the vessel navigating in that area for a few years, there are many sediment in the ballast tanks
 - --- To be cleaning it by owner

Acc. to the special requirements from ship owner we select **RWO CleanBallast! SYSTEMS** in this vessel

PRINCIPAL PARTICULARS for RWO CleanBallast! SYSTEMS

Number: Capacity:

Filter Flushing pump

- Capacity:
- Delivery pressure:
- Electric power consumption:

Disinfection-Unit

Electric power consumption:

Total electric power consumption: Pressure loss:

Total price:

2 sets 350m3/h (each) 2 sets 2 sets 330 m3/h (each) 0.60 MPa 110 kW (each) 2 sets 20kW (each) abt. 130kW X 2 0.08 MPa One million USD

Advantage:

- Big filter with Flushing pump
 - Big filter---- means good filtration performance
 - Flushing pump----The flushing pump will be automatic started to back washing the filter to keep filter cleaning---It's profit for operation
- It is suitable to use for ship in dirty area.

Disadvantage:

- Big size
- Big electric consumption
- High discharge resistance (Pressure loss)
- High price

Filter

Size: 5m x 3m x 2m

4-9-9

Disinfection-Unit

Size: 1.9m x 1.6m x 2.6m

- **1**. Mechanical filtration to remove suspended solids, sediments and certain organisms during ballasting
- 2. Disinfection to reduce the number of organisms before filling ballast water tanks
- **3**. Second disinfection to reduce the number of organisms according to the future Performance Standard D2 at ballast water discharge

RWO

SYSTEM DRAWING

ENGINE ROOM LAYOUT

19100DWT MPV

19100DWT MPV

400,000 DWT ORE CARRIER

400,000 DWT ORE CARRIER

PRINCIPAL PARTICULARS

 Length overall 	abt. 360.00 m
Breadth	65.00 m
Depth	30.40 m
 draught (Scantling) 	22.00 m
 Capacity of water ballast tanks 	190,700 m ³
 Application Date for D-2 standard 	2017

PureBallast System

PRINCIPAL PARTICULARS for Alfa Laval PureBallast SYSTEMS

Number:

• Capacity:

Filter

Pressure drop:

Wallenius AOT Unit

- Electric power consumption:
- Working pressure:
- Total electric power consumption:

2 sets 4000m3/h (each) 2 sets 0. 005-0.05 MPa 2 sets 510 kW (each) 0.25-0.6 Mpa abt.(510+6)kW X 2 =1026kW

ENGINE ROOM LAYOUT

- The suitable capacity of total ballast water in the vessel
 - --- as less as possible
- Select good performance for the system
 - --- High efficiency
 - --- Safety and durable
 - --- Big capacity and less electric consumption
 - --- Smaller size and simple structure
 - --- Easily for installation and maintenance
 - --- Lower cost

 Using permanent ballast for some kind of vessels in order to reduce the quantity of water ballast

--- For example, the container vessel, normally part of ballast water to be used at loading condition in order to increase the stability. We can use permanent ballast instead of this part of ballast water.

--- Otherwise, the specific gravity of permanent ballast (such as steel, iron, stone and concrete etc.) is heavier than sea water. It's better for ship's stability.

 The suitable capacity for ballast pump and suitable time for Ballasting /de-ballasting

--- The capacity of BW treatment system should be minimized because it is related to the engine room space, electric power consumption, and the equipment price etc.

--- The pump **capacity** is base on Ballasting /deballasting time. If the time longer, the pump capacity will be reduced. It should be agreed by Ship Owner

• The pump delivery pressure will be increased

--- Because of additional discharging resistance when BW through the BW treatment system

--- For new vessel there is no problem, but for existing vessels, the original pump delivery pressure will be not enough for installing some kinds of BW treatment system that has high additional resistance in the system. The original ballast pumps should be replaced.

More electric power consumption

---The power of Aux. engine may be increased

--- It is a big problem for existing vessels.

- Find suitable space for installing B.W. treatment equipment
 ---It may be had some problems for small vessel
 - ---Specially for existing vessel

Ozone Treatment System

On the superstructure

Inert Gas treatment system

NEI

- TECO Pat Cantrell
- 40,000 DWT Bulker
- Trades US Gulf and East Coast
- 2 x 1,000 m3/hr Pumps
- Double-Bottom and Lower Wing Tanks

Inert Gas treatment system

In the double bottom

- 12" Diameter Venturis in Machinery Space
- 2,500 m3/hr Inert Gas Generator

on low wing tank

In the engine room

Filtration and Oxidation Treatment system

In a car carrier

Filtration and Oxidation Treatment system

6.18 Ø750 DN400 500 m³/h 50µ In operation 2003

In the engine room

Filtration and Oxidation Treatment system

The Benrad **AOT** (Advanced Oxidation Technology) unit

In the engine room

The above mentioned is only examples > There are many other different problems for different kinds of B.W. Treatment system. We need study and develop these systems in the ship design to comply with the new regulation > We hope more and more Ballast Water Treatment system will be approved by Administration or Class and can be used in ship building We believe that Ballast Water Treatment system will be easier to install on ship as same as other

marine equipment In the future

THANKS