## The 3<sup>rd</sup> Asian Shipbuilding Experts' Forum

# **Current Circumstance of Ballast Water Management System**

## Hitachi Plant Technologies, Ltd. Yoshiharu Numata

- 1. Issues on current trend and effect of IMO ballast water convention
- 2. Current trend on R&D progress in this field in Japan
- 3. Hitachi Ballast Water Purification System Introduction of "Clear Ballast"

#### Ballast Water Convention

International Maritime Organization (IMO\*) Feb. 2004

"Regulations for the control and management of ships' ballast water and sediments" (Ballast Water Convention) was adopted.

Large amount of aquatic organisms in ballast tank



- Environmental issues (Settlement and procreation)
- Spread of epidemic

#### Ratification Trend

#### Requirement of ratification

- Ratifying countries : over 30
- Total shipping tonnage : over 35%



- Ratifying countries : 18 countries
- Total chipping tonnage :15.36%



- Ratifying countries (Requirement could be fulfilled by EU ratification.)
- Total shipping tonnage (Panama's trend is marked.)



- Date of regulation application
  - Application to a ship constructed during 2009 is reserved by annual survey held in year-end of 2011 (second class annual interim survey)
  - Regulation is retroactively applied to a ship constructed after 2010

:Application

| Construction<br>Period        | Ballast Water                                  | Time li |     |     | line          | ine                       |       |      |      |       |      |     |     |
|-------------------------------|------------------------------------------------|---------|-----|-----|---------------|---------------------------|-------|------|------|-------|------|-----|-----|
| (Keel Lay)                    | Capacity                                       | '08     | '09 | '10 | '11           | '12                       | '13   | '14  | '15  | '16   | '17  | '18 | '19 |
|                               | Less than 1500m <sup>3</sup>                   |         |     |     |               |                           |       |      |      |       |      |     |     |
| Before 2008<br>(Retrofit)     | Greater than<br>1500m³ and<br>less than 5000m³ |         |     |     |               |                           |       |      |      |       |      |     |     |
|                               | Greater than 5000m <sup>3</sup>                |         |     |     |               |                           |       |      |      |       |      |     |     |
|                               |                                                |         |     |     | $\rightarrow$ | A ship constructed in 200 |       |      |      | 09    |      |     |     |
| During 2009 to                | Less than 5000m <sup>3</sup>                   |         |     |     |               | A ship constructed in 2   | n 20  | 10   |      |       |      |     |     |
| 2011                          |                                                |         |     |     |               | A s                       | hip ( | cons | truc | ted i | n 20 | 11  |     |
| (Newly-built ship)            | Greater than 5000m <sup>3</sup>                |         |     |     |               |                           |       |      |      |       |      |     |     |
| After 2012 (Newly-built ship) | All the ships                                  |         |     |     |               |                           |       |      |      |       |      |     |     |

## Guideline (1)

## All the guidelines were adopted by MEPC58 (2008.10)

| Guideline                                                                       | Date of adoption (MEPC) |
|---------------------------------------------------------------------------------|-------------------------|
| Sediment Reception Facilities (G1)                                              | 2006.10 (55)            |
| Ballast Water Sampling (G2)                                                     | 2008.10 (58)            |
| Ballast Water Management Equivalent Compliance (G3)                             | 2005.7 (53)             |
| Ballast Water Management And Development Of Ballast Water Management Plans (G4) | 2005.7 (53)             |
| Ballast Water Reception Facilities (G5)                                         | 2006.10 (55)            |
| Ballast Water Exchange (G6)                                                     | 2005.7 (53)             |
| Risk Management (G7)                                                            | 2007.7 (56)             |
| Approval Of Ballast Water Management Systems (G8)                               | 2005.7 (53)             |

## Guideline (2)

| Guideline                                                                                          | Date of adoption (MEPC) |
|----------------------------------------------------------------------------------------------------|-------------------------|
| Procedure For Approval Of Ballast Water Management Systems That Make Use Of Active Substances (G9) | 2005.7 (53)             |
| Approval And Oversight Of Prototype Ballast Water Treatment technology programs (G10)              | 2006.3(54)              |
| Ballast Water Exchange Design And Construction Standards (G11)                                     | 2006.10(55)             |
| Design And Construction To Facilitate Sediment Control On Ships (G12)                              | 2006.10(55)             |
| Additional Measures Regarding Ballast Water Management Including Emergency Situations (G13)        | 2007.7(56)              |
| Designation Of Areas For Ballast Water Exchange (G14)                                              | 2006.10(55)             |

| Organism group                          | IMO   | e.g. USCG STEP |          |  |
|-----------------------------------------|-------|----------------|----------|--|
| Organism group                          | IIVIO | PHASE-1        | PHASE-2  |  |
| Organisms > 50µm<br>(individuals/m³)    | <10   | <10            | <0.1     |  |
| Organisms 10 – 50μm<br>(individuals/mL) | <10   | <10            | <0.1     |  |
| E. coli (cfu/100mL)                     | <250  | <250           | <126     |  |
| Enterococcus group (cfu/100mL)          | <100  | <100           | <33      |  |
| Vibrio cholerae (cfu/100mL)             | < 1   | <1             | <1       |  |
| Bacteria (cfu/100mL)                    | -     | -              | (<1000)  |  |
| Virus (cfu/100mL)                       | -     | -              | (<10000) |  |

It is extremely important not only to *meet regulation of water quality*, but also to *consider environment*.

#### Issues for Ratification of Convention

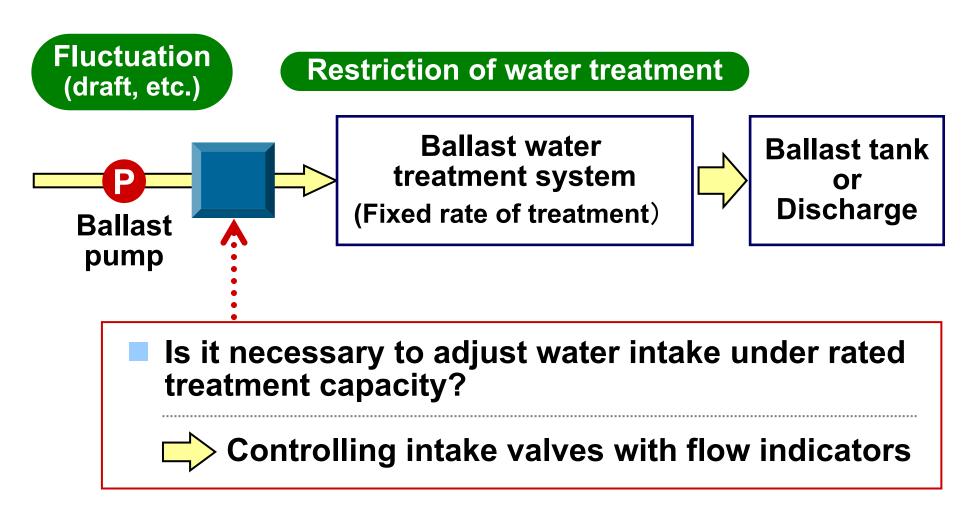
ClearBallast

- Key Point
  - System formulation as well as device development
  - Coalition between ship owners, shipbuilders and device

manufacturers **Device Development** (applied to all ships) **Management of** water intake **Management of** 

**Arrangement** (Retrofit, Hazardous area, etc.)

**Sediment** management (either in dock)


**Sampling and Analysis** (Self-management, **PSC** corresponding)

**Discharge** 

**Crew training** 

**Emergency planning** 

Control of water intake



Sampling (G2)

#### General requirement

Sampling device of water suction with constant speed at compliant location laid by guideline

#### Port state control corresponding

- Establishment of analysis method (including simple analysis), and evaluation method
- Development of on-line bio monitoring device

Sediment Control (Article5·B-5·G1·G12)

#### Facilities accepting sediment

- Less advanced trend on facilities to accepting sediment
  - Major issue: treatment of sludge from cleaning and repairing ballast water tank

#### Hull structure

- Design of ballast water tank, and hull structure to avoid sediment accumulation in ballast water tank
  - Major issue: treatment of sludge from cleaning and repairing ballast water tank

More discussion on these issues is necessary for details.

## The clock is ticking



| Manufacturers                                                                                    | Method                                                   | G        | G8       |               |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------|----------|---------------|
| Manuacturers                                                                                     | Wiethou                                                  | Basic    | Final    | Go            |
| Hitachi Plant<br>Technologies                                                                    | Coagulation and Magnetic Separation                      | Approved | Approved | Under<br>exam |
| Mitsui Engineering<br>and Ship-buildings<br>and The Japan<br>Association of<br>Marine Safety, Pj | Special-pipe+O <sub>3</sub>                              | Approved |          | Under<br>exam |
| JFE Engineering                                                                                  | Filter +<br>Hypochlorous acid +<br>Venturi (Cavitations) | Approved |          | Under<br>exam |
| SHINKO                                                                                           | Special-pipe +<br>Paraclean                              | Approved |          |               |
| KURARAY                                                                                          | Nonwoven Filter +<br>Solid form chemicals                |          |          |               |
| TAIKO SNAGYO                                                                                     | Heat sterilization                                       |          |          |               |
| Sumitomo Electric Industries                                                                     | Magnetic Separation                                      |          |          |               |

**<sup>@</sup>**Hitachi Plant Technologies, Ltd.

#### SP-Hybrid (O)

| Method           | Special-Pipe + O <sub>3</sub> |
|------------------|-------------------------------|
| Active Substance | O3 + Byproduct                |



special pipe



ozonizer

\* From catalogue

## JFE Engineering

#### JFE-BWMS

| Method           | Filter + Hypochlorous acid<br>+ Venturi (Cavitations) |
|------------------|-------------------------------------------------------|
| Active Substance | Hypochlorous + Byproduct                              |



\* From catalogue

## **Hitachi Plant Technologies**

#### ClearBallast

| Method           | Coagulation and Magnetic Separation                            |  |  |
|------------------|----------------------------------------------------------------|--|--|
| Active Substance | Coagulants (used for drinking water process) + Magnetic Powder |  |  |

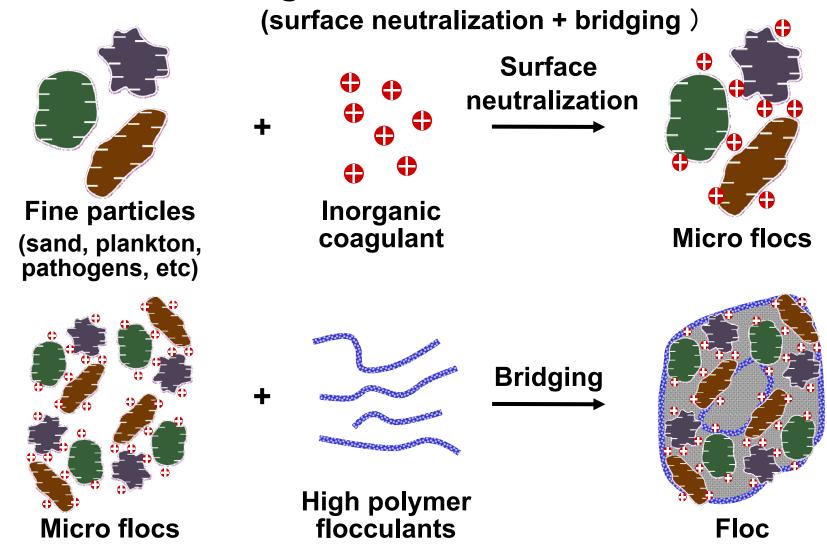


15

## **ClearBallast: Concept**

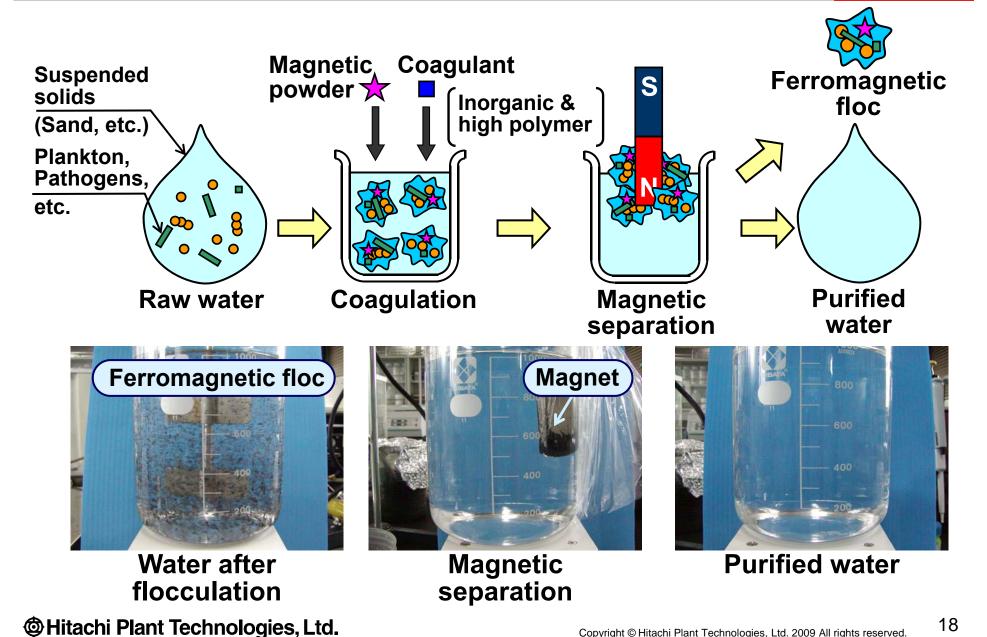
Consideration to environment Simultaneous solution





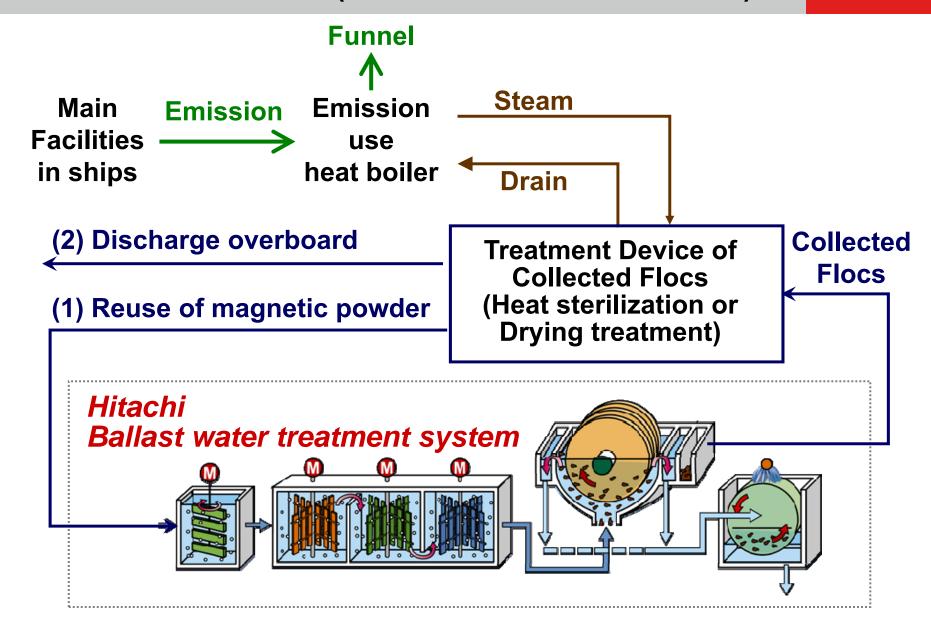

No pollution by chemicals in discharged water

Drastic reduction of mud sedimentation (SS & Dead marine organisms)


## **Application of coagulation method**

Mechanism of coagulation &flocculation




#### **ClearBallast: Coagulation and Magnetic Separation**

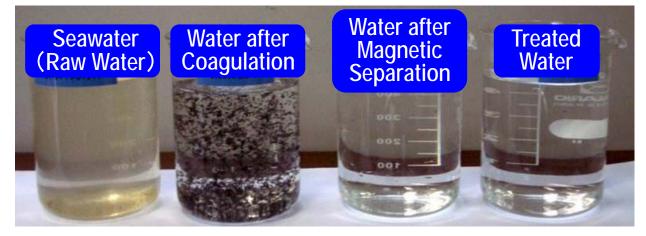
ClearBallast



| Coagulation reactor                                     | Flocculation reactor    | Magnetic<br>separator         | Filter<br>separator                            |
|---------------------------------------------------------|-------------------------|-------------------------------|------------------------------------------------|
| Uniformly mixing                                        | Growth of flocs         | Separation of fe              | erromagnetic flocs                             |
| Inorganic coagulants & magnetic powder  High  Sea water | polymer coagulants      | Magnetic disks Collected floc | Filter washing spray Filter drum  Ballast tank |
| Retention time<br>30sec                                 | Retention time<br><2min | •                             | ntion time<br>Osec                             |

20




## ClearBallast : Feature (1)

- Clear Treated Water
  - Stable Removal Performance (Non Seawater Condition-based (Turbidity, Salinity)
  - Effective Application of Treated Water (Preprocess for Desalination)
- Propagation Inhibition of Pathogens and Plankton in Ballast Tank
  - Mud with high possibility of organisms propagation are reduced
  - Spawn of organisms and mold spore are removed
  - Phosphorus as necessary nutrition for organisms growth is

removed



Mud



#### Safety to Environment

Eco-toxicity test, which is relevant to G9, shows that non-diluted treated water is safe enough to be discharged into sea

G9 Final Approval was granted to this system

#### Safety to Ships

Treated water has no impact on coating of tanks and piping (1000-hour test of spraying treated water onto test piece shows the safety)

#### Others

- Ballast water treatment is operated only during ballasting
- Small electric power is required and it facilitates protection-proof design

This treatment System is safe to "environment", "ships" and "humans"

| Organism group      | Influent water | Treated water after 5 days storage      | In control<br>after 5 days<br>storage |  |
|---------------------|----------------|-----------------------------------------|---------------------------------------|--|
| Organisms > 50µm    | 5,700,000      | <1                                      | 7,200,000                             |  |
| (individuals/m³)    | RQ >100,000    | RQ<10                                   | RQ>100                                |  |
| Organisms 10 – 50µm | 15,000         | <1                                      | 1,100                                 |  |
| (individuals/mL)    | All the analy  | All the analysis items of treated water |                                       |  |
| E. coli (cfu/100mL) |                |                                         |                                       |  |
| L. Con (Cla/ToomL)  |                |                                         | -                                     |  |
| Vibrio cholerae     | mee            | et                                      | <1                                    |  |
| (cfu/100mL)         | D-2 stan       | dard.                                   | -                                     |  |
| Enterococcus group  | <1             | <1                                      | <1                                    |  |
| (cfu/100mL)         | =              | RQ<100                                  | =                                     |  |

**RQ: IMO Requirement** 

24

## ClearBallast: Land Based Test (2)

Inspissations of Sampled Water

(with 50 microns mesh)



Sampled Control Water (After inspissations : 1m³→50mL)



Sampled Treated Water (After inspissations : 1m³→50mL)

- The employed method removes pollutants in water
- Therefore microscopy and pathogens cultivation tests are easy

#### Result of organisms removal performance

| Orga                     | nism group                             | Sea water<br>(Influent)        | Treated ballast water | Untreated ballast water |  |  |
|--------------------------|----------------------------------------|--------------------------------|-----------------------|-------------------------|--|--|
| Organism                 |                                        | 31,603                         | <1                    | 8,392                   |  |  |
| (individua               | als/m³)                                | PO >100                        | PO<10                 | PO>10                   |  |  |
| Organisn<br>(individu    |                                        |                                |                       |                         |  |  |
| E. coli (c               |                                        | ced by water<br>e.g.Turbidity, |                       | itions.                 |  |  |
|                          | Vibrio cherae (cfu/100mL) D-2 standard |                                |                       |                         |  |  |
| Enterococcus group <1 <1 |                                        |                                |                       |                         |  |  |
| (cfu/100m                | ıL)                                    | -                              | RQ<100                | -                       |  |  |

**RQ: IMO Requirement** 

## **ClearBallast: System Specifications**

#### Specification

| Ballast pump<br>scale<br>=System scale<br>(m³/h) |     | Unit type                                                                                       | Devic                          | e size   |
|--------------------------------------------------|-----|-------------------------------------------------------------------------------------------------|--------------------------------|----------|
| , ,                                              |     | One of this syste                                                                               | m features                     |          |
| 200                                              |     | One of this syste                                                                               | III leatures                   | ontainer |
|                                                  |     | is                                                                                              | ntainer ×2                     |          |
| 400                                              |     | Its small consu                                                                                 | ntainer ×1                     |          |
|                                                  |     | electric p                                                                                      | 0×3500H                        |          |
| 800                                              |     | 200m3/h-13                                                                                      | BkW                            | n²       |
|                                                  | •   | 400m3/h-23                                                                                      | BkW                            | Print    |
| 1200                                             | • [ | Magnetic separator                                                                              | %Foot Print  69m²  ※Foot Print |          |
| 1600                                             |     | <ul> <li>Filter separator</li> <li>Chemical injectors</li> <li>eration control panel</li> </ul> |                                |          |

## Inquiries



Environmental Preservation and Water Treatment Sales Div.
 Strategic Marketing and Planning Dept.

Osamu Hatomi

E-mail: osamu.hatomi.jk@hitachi-pt.com

 Environment Preservation & Water Treatment Group Environmental Solution Div.
 New Business Promotion Dept.

Shigeki Kobayashi

TEL: +81-4-7361-6126
FAX: +81-4-7361-6107

E-mail: shigeki.kobayashi.uf@hitachi-pt.com